• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.028 seconds

Resolution Enhancement of an Ultrasonic Sensor System via Multiple Steps of the Transmitter Voltage (다단 송출전압을 이용한 초음파센서 시스템의 분해능 개선)

  • Na, Seung-You;Park, Min-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.298-306
    • /
    • 1997
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But the main purposes of the noncontact sensors are rather narrowly confined within object detection and distance measurement. For the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of an object, and specularity which gives frequent erroneous range readings. To resolve these problems in object recognition, an array of the sensors has been used. To improve the spatial resolution, more number of sensors are used in essence throughout the various devices of the sensor arrays. Under the disguise of a fixed number of the sensors, the array can be shifted mechanically in several steps. In this paper we propose a practical sensor resolution enhancement method using an electronic circuit accompanying the sensor array. The circuit changes the transmitter output voltage in several steps. Using the known sensor characteristics, a set of different return echo signals provide enhanced spatial resolution. The improvement is obtained without the cost of the increased number of the sensors nor extra mechanical devices.

  • PDF

Proposal of a method of using HSV histogram data learning to provide additional information in object recognition (객체 인식의 추가정보제공을 위한 HSV 히스토그램 데이터 학습 활용 방법 제안)

  • Choi, Donggyu;Wang, Tae-su;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.6-8
    • /
    • 2022
  • Many systems that use images through object recognition using deep learning have provided various solutions beyond the existing methods. Many studies have proven its usability, and the actual control system shows the possibility of using it to make people's work more convenient. Many studies have proven its usability, and actual control systems make human tasks more convenient and show possible. However, with hardware-intensive performance, the development of models is facing some limitations, and the ease with the use and additional utilization of many unupdated models is falling. In this paper, we propose how to increase utilization and accuracy by providing additional information on the emotional regions of colors and objects by utilizing learning and weights from HSV color histograms of local image data recognized after conventional stereotyped object recognition results.

  • PDF

Development of Network based Remote Surveillance System Using Omni-Directional Mobile Robot (전방향 이동로봇을 이용한 네트워크기반 원격 감시시스템 구현)

  • Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.91-97
    • /
    • 2010
  • This paper describes a development of an network based remote surveillance system using omni-directional mobile robot. the proposed surveillance system can control a mobile robot to move and examines the given place closely while the conventional surveillance system uses a fixed camera. The mobile robot in the proposed system has three omni-directional wheels to move to any given direction freely. We also developed the proposed system as robot services using Microsoft's MSRDS for a user to control the mobile robot and monitor the remote scene captured from the robot. Finally we verified the feasibility and effectiveness of the proposed system by conducting the remote operating the mobile robot and monitoring experiments in a networked environment. We also conducted a color based object detection and motion detection on image sequences acquired from a remote mobile robot in an another PC in a network environment.

A Ship-Wake Joint Detection Using Sentinel-2 Imagery

  • Woojin, Jeon;Donghyun, Jin;Noh-hun, Seong;Daeseong, Jung;Suyoung, Sim;Jongho, Woo;Yugyeong, Byeon;Nayeon, Kim;Kyung-Soo, Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.77-86
    • /
    • 2023
  • Ship detection is widely used in areas such as maritime security, maritime traffic, fisheries management, illegal fishing, and border control, and ship detection is important for rapid response and damage minimization as ship accident rates increase due to recent increases in international maritime traffic. Currently, according to a number of global and national regulations, ships must be equipped with automatic identification system (AIS), which provide information such as the location and speed of the ship periodically at regular intervals. However, most small vessels (less than 300 tons) are not obligated to install the transponder and may not be transmitted intentionally or accidentally. There is even a case of misuse of the ship'slocation information. Therefore, in this study, ship detection was performed using high-resolution optical satellite images that can periodically remotely detect a wide range and detectsmallships. However, optical images can cause false-alarm due to noise on the surface of the sea, such as waves, or factors indicating ship-like brightness, such as clouds and wakes. So, it is important to remove these factors to improve the accuracy of ship detection. In this study, false alarm wasreduced, and the accuracy ofship detection wasimproved by removing wake.As a ship detection method, ship detection was performed using machine learning-based random forest (RF), and convolutional neural network (CNN) techniquesthat have been widely used in object detection fieldsrecently, and ship detection results by the model were compared and analyzed. In addition, in this study, the results of RF and CNN were combined to improve the phenomenon of ship disconnection and the phenomenon of small detection. The ship detection results of thisstudy are significant in that they improved the limitations of each model while maintaining accuracy. In addition, if satellite images with improved spatial resolution are utilized in the future, it is expected that ship and wake simultaneous detection with higher accuracy will be performed.

Internal Object Detection Monitoring System in Reinforced Concrete Structure using UWB-RF (UWB-RF를 이용한 콘크리트 구조물의 내부 물체 검출 모니터링 시스템)

  • Park, Dae-Hyuck;Kang, Eui-Sun
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1457-1464
    • /
    • 2017
  • This paper is to introduce the a system which monitors and detects the object position in reinforced the concrete structure using UWB-RF. This system is able to check any changes in the inside of the concrete structure using its penetration and reflection characteristics and it can also numerically measure the position of rebar in the concrete structure. For the verification of the performance of this system, we set up the internal compositions of concrete in 3 different types of test-bed. On the other hand, for the measuring of the location of rebar, which varies depending on the type of structure, the software which shows the distance in the structure were used. The result shows that the position in the concrete could be measured within the tolerance of ${\pm}1{\sim}4mm$ depending on the type of structure in the concrete.

A Low Cost 3D Skin Wrinkle Reconstruction System Based on Stereo Semi-Dense Matching (반 밀집 정합에 기반한 저가형 3차원 주름 데이터 복원)

  • Zhang, Qian;WhangBo, Taeg-Keun
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.25-33
    • /
    • 2009
  • In the paper, we proposed a new system to retrieve 3D wrinkle data based on stereo images. Usually, 3D reconstruction based on stereo images or video is very popular and it is the research focus, which has been applied for culture heritage, building and other scene. The target is object measurement, the scene depth calculation and 3D data obtained. There are several challenges in our research. First, it is hard to take the full information wrinkle images by cameras because of light influence, skin with non-rigid object and camera performance. We design a particular computer vision system to take winkle images with a long length camera lens. Second, it is difficult to get the dense stereo data because of the hard skin texture image segmentation and corner detection. We focus on semi-dense stereo matching algorithm for the wrinkle depth. Compared with the 3D scanner, our system is much cheaper and compared with the physical modeling based method, our system is more flexible with high performance.

  • PDF

A Study on a Violence Recognition System with CCTV (CCTV에서 폭력 행위 감지 시스템 연구)

  • Shim, Young-Bin;Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • With the increased frequency of crime such as assaults and sexual violence, the reliance on CCTV in arresting criminals has increased as well. However, CCTV, which should be monitored by human labor force at all times, has limits in terms of budget and man-power. Thereby, the interest in intelligent security system is growing nowadays. Expanding the techniques of an objects behavior recognition in previous studies, we propose a system to detect forms of violence between 2~3 objects from images obtained in CCTV. It perceives by detecting the object with the difference operation and the morphology of the background image. The determinant criteria to define violent behaviors are suggested. Moreover, provable decision metric values through measurements of the number of violent condition are derived. As a result of the experiments with the threshold values, showed more than 80% recognition success rate. A future research for abnormal behaviors recognition system in a crowded circumstance remains to be developed.

Design and Implementation of Unmanned Surface Vehicle JEROS for Jellyfish Removal (해파리 퇴치용 자율 수상 로봇의 설계 및 구현)

  • Kim, Donghoon;Shin, Jae-Uk;Kim, Hyongjin;Kim, Hanguen;Lee, Donghwa;Lee, Seung-Mok;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • Recently, the number of jellyfish has been rapidly grown because of the global warming, the increase of marine structures, pollution, and etc. The increased jellyfish is a threat to the marine ecosystem and induces a huge damage to fishery industries, seaside power plants, and beach industries. To overcome this problem, a manual jellyfish dissecting device and pump system for jellyfish removal have been developed by researchers. However, the systems need too many human operators and their benefit to cost is not so good. Thus, in this paper, the design, implementation, and experiments of autonomous jellyfish removal robot system, named JEROS, have been presented. The JEROS consists of an unmanned surface vehicle (USV), a device for jellyfish removal, an electrical control system, an autonomous navigation system, and a vision-based jellyfish detection system. The USV was designed as a twin hull-type ship, and a jellyfish removal device consists of a net for gathering jellyfish and a blades-equipped propeller for dissecting jellyfish. The autonomous navigation system starts by generating an efficient path for jellyfish removal when the location of jellyfish is received from a remote server or recognized by a vision system. The location of JEROS is estimated by IMU (Inertial Measurement Unit) and GPS, and jellyfish is eliminated while tracking the path. The performance of the vision-based jellyfish recognition, navigation, and jellyfish removal was demonstrated through field tests in the Masan and Jindong harbors in the southern coast of Korea.

Implementation of Preceding Vehicle Break-Lamp Detection System using Selective Attention Model and YOLO (선택적 주의집중 모델과 YOLO를 이용한 선행 차량 정지등 검출 시스템 구현)

  • Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.85-90
    • /
    • 2021
  • A ADAS(Advanced Driver Assistance System) for the safe driving is an important area in autonumous car. Specially, a ADAS software using an image sensors attached in previous car is low in building cost, and utilizes for various purpose. A algorithm for detecting the break-lamp from the tail-lamp of preceding vehicle is proposed in this paper. This method can perceive the driving condition of preceding vehicle. Proposed method uses the YOLO techinicque that has a excellent performance in object tracing from real scene, and extracts the intensity variable region of break-lamp from HSV image of detected vehicle ROI(Region Of Interest). After detecting the candidate region of break-lamp, each isolated region is labeled. The break-lamp region is detected finally by using the proposed selective-attention model that percieves the shape-similarity of labeled candidate region. In order to evaluate the performance of the preceding vehicle break-lamp detection system implemented in this paper, we applied our system to the various driving images. As a results, implemented system showed successful results.

Automatic detection of periodontal compromised teeth in digital panoramic radiographs using faster regional convolutional neural networks

  • Thanathornwong, Bhornsawan;Suebnukarn, Siriwan
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.169-174
    • /
    • 2020
  • Purpose: Periodontal disease causes tooth loss and is associated with cardiovascular diseases, diabetes, and rheumatoid arthritis. The present study proposes using a deep learning-based object detection method to identify periodontally compromised teeth on digital panoramic radiographs. A faster regional convolutional neural network (faster R-CNN) which is a state-of-the-art deep detection network, was adapted from the natural image domain using a small annotated clinical data- set. Materials and Methods: In total, 100 digital panoramic radiographs of periodontally compromised patients were retrospectively collected from our hospital's information system and augmented. The periodontally compromised teeth found in each image were annotated by experts in periodontology to obtain the ground truth. The Keras library, which is written in Python, was used to train and test the model on a single NVidia 1080Ti GPU. The faster R-CNN model used a pretrained ResNet architecture. Results: The average precision rate of 0.81 demonstrated that there was a significant region of overlap between the predicted regions and the ground truth. The average recall rate of 0.80 showed that the periodontally compromised teeth regions generated by the detection method excluded healthiest teeth areas. In addition, the model achieved a sensitivity of 0.84, a specificity of 0.88 and an F-measure of 0.81. Conclusion: The faster R-CNN trained on a limited amount of labeled imaging data performed satisfactorily in detecting periodontally compromised teeth. The application of a faster R-CNN to assist in the detection of periodontally compromised teeth may reduce diagnostic effort by saving assessment time and allowing automated screening documentation.