• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.03 seconds

Real-time Abnormal Behavior Analysis System Based on Pedestrian Detection and Tracking (보행자의 검출 및 추적을 기반으로 한 실시간 이상행위 분석 시스템)

  • Kim, Dohun;Park, Sanghyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.25-27
    • /
    • 2021
  • With the recent development of deep learning technology, computer vision-based AI technologies have been studied to analyze the abnormal behavior of objects in image information acquired through CCTV cameras. There are many cases where surveillance cameras are installed in dangerous areas or security areas for crime prevention and surveillance. For this reason, companies are conducting studies to determine major situations such as intrusion, roaming, falls, and assault in the surveillance camera environment. In this paper, we propose a real-time abnormal behavior analysis algorithm using object detection and tracking method.

  • PDF

A Study on Image Annotation Automation Process using SHAP for Defect Detection (SHAP를 이용한 이미지 어노테이션 자동화 프로세스 연구)

  • Jin Hyeong Jung;Hyun Su Sim;Yong Soo Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.76-83
    • /
    • 2023
  • Recently, the development of computer vision with deep learning has made object detection using images applicable to diverse fields, such as medical care, manufacturing, and transportation. The manufacturing industry is saving time and money by applying computer vision technology to detect defects or issues that may occur during the manufacturing and inspection process. Annotations of collected images and their location information are required for computer vision technology. However, manually labeling large amounts of images is time-consuming, expensive, and can vary among workers, which may affect annotation quality and cause inaccurate performance. This paper proposes a process that can automatically collect annotations and location information for images using eXplainable AI, without manual annotation. If applied to the manufacturing industry, this process is thought to save the time and cost required for image annotation collection and collect relatively high-quality annotation information.

Operational Ship Monitoring Based on Integrated Analysis of KOMPSAT-5 SAR and AIS Data (Kompsat-5 SAR와 AIS 자료 통합분석 기반 운영레벨 선박탐지 모니터링)

  • Kim, Sang-wan;Kim, Dong-Han;Lee, Yoon-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.327-338
    • /
    • 2018
  • The possibility of ship detection monitoring at operational level using KOMPSAT-5 Synthetic Aperture Radar (SAR) and Automatic Identification System (AIS) data is investigated. For the analysis, the KOMPSAT-5 SLC images, which are collected from the west coast of Shinjin port and the northern coast of Jeju port are used along with portable AIS data from near the coast. The ship detection algorithm based on HVAS (Human Visual Attention System) was applied, which has significant advantages in terms of detection speed and accuracy compared to the commonly used CFAR (Constant False Alarm Rate). As a result of the integrated analysis, the ship detection from KOMPSAT-5 and AIS were generally consistent except for small vessels. Some ships detected in KOMPSAT-5 but not in AIS are due to the data absence from AIS, while it is clearly visible in KOMPSAT-5. Meanwhile, SAR imagery also has some false alarms due to ship wakes, ghost effect, and DEM error (or satellite orbit error) during object masking in land. Improving the developed ship detection algorithm and collecting reliable AIS data will contribute for building wide integrated surveillance system of marine territory at operational level.

Preliminary Perfomances Anlaysis of 1.5-m Scale Multi-Purpose Laser Ranging System (1.5m급 다목적형 레이저 추적 시스템 예비 성능 분석)

  • Son, Seok-Hyeon;Lim, Jae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.771-780
    • /
    • 2021
  • The space Debris laser ranging system is called to be a definite type of satellite laser ranging system that measures the distance to satellites. It is a system that performs POD (Precise Orbit Determination) by measuring time of flight by firing a laser. Distance precision can be measured in mm-level units, and it is the most precise system among existing systems. Currently, KASI has built SLR in Sejong and Geochang, and utilized SLR data to verify the precise orbits of the STSAT-2C and KOMASAT-5. In recent years, due to the fall or collision of space debris, its satellites have been threatened, and in terms of security, laser tracking of space objects is receiving great interest in order to protect their own space assets and protect the safety of the people. In this paper, a 1.5m-class main mirror was applied for the system design of a multipurpose laser tracking system that considers satellite laser ranging and space object laser tracking. System preliminary performance analysis was performed based on Link Budget analysis considering specifications of major components.

On-line Surface Defect Detection using Spatial Filtering Method (공간필터법을 이용한 온라인 표면결함 계측)

  • Moon, Serng-Bae;Jun, Seung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2004
  • Defects inspection of commodities are very important with those design and manufacturing process and essential to strengthen the competitiveness of those. If on-line automatic defects detection is performed without damaging to products, the production cost shall be curtailed through the reducing man-power, economical management of Q.C(Quality Control). In this paper, it is suggested three spatial filtering methods which can extract the necessary information in case of defects being on the surface of object like iron plate. In addition, the dependence of filtering characteristics on parameters such as the pitch and width of slits is analyzed and the surface defect detection system is constructed. Several experiments were carried out for determining the adequate spatial filtering method through comparing and analyzing effects of parameters like defect's size and shape, intensity of light, noise of coherent source and slit number.

Methodology of Calibration for Falling Objects Accident-Risk-Zone Approach Detection Algorithm at Port Considering GPS Errors (GPS 오차를 고려한 항만 내 낙하물 사고위험 알고리즘 보정 방법론 개발)

  • Son, Seung-Oh;Kim, Hyeonseo;Park, Juneyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.61-73
    • /
    • 2020
  • Real-time location-sensing technology using location information collected from IoT devices is being applied for safety management purposes in many industries, such as ports. On the other hand, positional error is always present owing to the characteristics of GPS. Therefore, accident-risk detection algorithms must consider positional error. This paper proposes an methodology of calibration for falling object accident-risk-zone approach detection algorithm considering GPS errors. A probability density function was estimated, with positional error data collected from IoT devices as a probability variable. As a result of the verification, the algorithm showed a detection accuracy of 93% and 77%. Overall, the analysis results derived according to the GPS error level will be an important criterion for upgrading algorithms and real-time risk managements in the future.

Design of Face with Mask Detection System in Thermal Images Using Deep Learning (딥러닝을 이용한 열영상 기반 마스크 검출 시스템 설계)

  • Yong Joong Kim;Byung Sang Choi;Ki Seop Lee;Kyung Kwon Jung
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • Wearing face masks is an effective measure to prevent COVID-19 infection. Infrared thermal image based temperature measurement and identity recognition system has been widely used in many large enterprises and universities in China, so it is totally necessary to research the face mask detection of thermal infrared imaging. Recently introduced MTCNN (Multi-task Cascaded Convolutional Networks)presents a conceptually simple, flexible, general framework for instance segmentation of objects. In this paper, we propose an algorithm for efficiently searching objects of images, while creating a segmentation of heat generation part for an instance which is a heating element in a heat sensed image acquired from a thermal infrared camera. This method called a mask MTCNN is an algorithm that extends MTCNN by adding a branch for predicting an object mask in parallel with an existing branch for recognition of a bounding box. It is easy to generalize the R-CNN to other tasks. In this paper, we proposed an infrared image detection algorithm based on R-CNN and detect heating elements which can not be distinguished by RGB images.

Abnormal Behavior Detection Based on Adaptive Background Generation for Intelligent Video Analysis (지능형 비디오 분석을 위한 적응적 배경 생성 기반의 이상행위 검출)

  • Lee, Seoung-Won;Kim, Tae-Kyung;Yoo, Jang-Hee;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2011
  • Intelligent video analysis systems require techniques which can predict accidents and provide alarms to the monitoring personnel. In this paper, we present an abnormal behavior analysis technique based on adaptive background generation. More specifically, abnormal behaviors include fence climbing, abandoned objects, fainting persons, and loitering persons. The proposed video analysis system consists of (i) background generation and (ii) abnormal behavior analysis modules. For robust background generation, the proposed system updates static regions by detecting motion changes at each frame. In addition, noise and shadow removal steps are also were added to improve the accuracy of the object detection. The abnormal behavior analysis module extracts object information, such as centroid, silhouette, size, and trajectory. As the result of the behavior analysis function objects' behavior is configured and analyzed based on the a priori specified scenarios, such as fence climbing, abandoning objects, fainting, and loitering. In the experimental results, the proposed system was able to detect the moving object and analyze the abnormal behavior in complex environments.

A Implementation of Electronic Measurement Datum Point Monitoring S/W based on Object-Oriented Modeling for Multi Purpose and High Availability (다목적 및 고활용성을 위한 객체지향 모델링 기반의 전자 측량기준점 모니터링 S/W 구현)

  • Jung, Se-Hoon;Sim, Chun-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.99-112
    • /
    • 2015
  • Datum point for displaying location and altitude of point has being advantage usefully in various measurement parts. However, datum point has been increasing loss cases owing to weather changes and stratum changes and neglecting meaninglessly. In this paper, we design and implement a multi electronic measurement system monitoring software with functions such as include maximize utilization of existing measurement datum system as well as collected various environment data and detection stratum changes of surround area. Proposed software is implemented to support that reusability and extensibility of software using object oriented modeling method. Our software supports a GUI for electronic measurement datum point administrator as well as for web user and mobile user. Our system can support a graph GUI for various data analysis and reposition in realtime to database that measured location information and various sensing information to prevent loss of electronic measurement datum point and to detected stratum changes. In addition, we include a QR code and RFID recognition function. Finally, we suggest performance evaluation result to confirm stratum changes detection and GPS location error rate.

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.