In this paper, we propose an efficient automatic pedestrian removal system from a frame in a video sequence. It firstly finds pedestrians from the frame using a Histogram of Oriented Gradient(HOG) / Linear-Support Vector Machine(L-SVM) classifier, searches for proper background patches, and then the patches are used to replace the deleted pedestrians. Background patches are retrieved from the reference video sequence and a modified feather blender algorithm is applied to make boundaries of replaced blocks look naturally. The proposed system, is designed to automatically detect object and generate natural-looking patches, while most existing systems provide search operation in manual. In the experiment, the average PSNR of the replaced blocks is 19.246
A map of complex environment can be generated using a robot carrying sensors. However, representation of environments directly using the integration of sensor data tells only spatial existence. In order to execute high-level applications, robots need semantic knowledge of the environments. This research investigates the design of a system for recognizing objects in 3D point clouds of urban environments. The proposed system is decomposed into five steps: sequential LIDAR scan, point classification, ground detection and elimination, segmentation, and object classification. This method could classify the various objects in urban environment, such as cars, trees, buildings, posts, etc. The simple methods minimizing time-consuming process are developed to guarantee real-time performance and to perform data classification on-the-fly as data is being acquired. To evaluate performance of the proposed methods, computation time and recognition rate are analyzed. Experimental results demonstrate that the proposed algorithm has efficiency in fast understanding the semantic knowledge of a dynamic urban environment.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2004.04a
/
pp.471-477
/
2004
In this study, we introduce a 3-dimensional simulation to support the Design on ACT(Automated Container Terminal). This simulation system developed to simulate virtual operations of ACT using 3-dimensional simulation and animate the simulated results with real time. And the developed system applied an object-oriented design and C++ programming to increase the reusability and extensibility. We select several items of performance evaluation for objects used in ACT in terms of problem detection, problem forecast, and logic feasibility, and provide evaluation points for the design of ACT.
With the development of autonomous driving technology, the importance of object recognition technology is increasing. Haze removal is required because the hazy weather reduces visibility and detectability in object recognition. However, the image from which the haze has been removed cannot properly reflect the unique color, and a detection error occurs. In this paper, we use CIE1931 color coordinate system to extend or reduce the color area to provide algorithms and hardware that reflect the colors of the real world. In addition, we will implement hardware capable of real-time processing in a 4K environment as the image media develops. This hardware was written in Verilog and implemented on the SoC verification board.
The advancement of technology for image processing and communications makes it possible for current traffic signal controllers and vehicle detection technology to make both emergency vehicle preemption and transit priority strategies as a part of integrated system. Present]y traffic signal control in crosswalk is controlled by fixed signals. The signal control keeps regular signals traffic even with no traffic, when there is traffic, should wait until the signal is given. Waiting time causes the risk of traffic accidents and traffic congestion in accordance with signal violation. To help reduce the risk of accidents and congestion, this paper explains traffic signal control system for the adaptive priority order so that signal may be preferentially given in accordance with the situation of site through the object detect images.
Not merely running at the designated constant speed as the classical cruise control, the adaptive cruise control (ACC) maintains safe headway distance when the front is blocked by other vehicles. One of the most essential part of ACC System is the range sensor which can measure the position and speed of all objects in front continuously, ignore all irrelevant objects, distinguish vehicles in different lanes and lock on to the closest vehicle in the same lane. In this paper, the hierarchical object recognition algorithm (HORA) is proposed to process raw scanning laser data and acquire valid distance to target vehicle. HORA contains two principal concepts. First, the concept of life quantifies the reliability of range data to filter off the spurious detection and preserve the missing target position. Second, the concept of conformation checks the mobility of each obstacle and tracks the position shift. To estimate and predict the vehicle position Kalman filter is used. Repeatedly updated covariance matrix determines the bound of valid data. The algorithm is emulated on computer and tested on-line with our ACC vehicle.
In recent years, research has been actively carried out to recognize and recognize objects based on a large amount of data. In this paper, we propose a system that extracts objects that are thought to be obstacles in road driving images and recognizes them by car, man, and motorcycle. The objects were extracted using Optical Flow in consideration of the direction and size of the moving objects. The extracted objects were recognized using Alexnet, one of CNN (Convolutional Neural Network) recognition models. For the experiment, various images on the road were collected and experimented with black box. The result of the experiment showed that the object extraction accuracy was 92% and the object recognition accuracy was 96%.
International Journal of Computer Science & Network Security
/
v.23
no.4
/
pp.48-54
/
2023
Nowadays, a blind man finds it very difficult to cross the roads. They should be very vigilant with every step they take. To resolve this problem, Convolutional Neural Networks(CNN) is a best method to analyse the data and automate the model without intervention of human being. In this work, a traffic signal recognition system is designed using CNN for the visually impaired. To provide a safe walking environment, a voice message is given according to light state and timer state at that instance. The developed model consists of two phases, in the first phase the CNN model is trained to classify different images captured from traffic signals. Common Objects in Context (COCO) labelled dataset is used, which includes images of different classes like traffic lights, bicycles, cars etc. The traffic light object will be detected using this labelled dataset with help of object detection model. The CNN model detects the color of the traffic light and timer displayed on the traffic image. In the second phase, from the detected color of the light and timer value a text message is generated and sent to the text-to-speech conversion model to make voice guidance for the blind person. The developed traffic light recognition model recognizes traffic light color and countdown timer displayed on the signal for safe signal crossing. The countdown timer displayed on the signal was not considered in existing models which is very useful. The proposed model has given accurate results in different scenarios when compared to other models.
Journal of Korean Tunnelling and Underground Space Association
/
v.19
no.6
/
pp.915-936
/
2017
In this study, current status of Korean hazard mitigation guideline for tunnel operation is summarized. It shows that requirement for CCTV installation has been gradually stricted and needs for tunnel incident detection system in conjunction with the CCTV in tunnels have been highly increased. Despite of this, it is noticed that mathematical algorithm based incident detection system, which are commonly applied in current tunnel operation, show very low detectable rates by less than 50%. The putative major reasons seem to be (1) very weak intensity of illumination (2) dust in tunnel (3) low installation height of CCTV to about 3.5 m, etc. Therefore, an attempt in this study is made to develop an deep-learning based tunnel incident detection system, which is relatively insensitive to very poor visibility conditions. Its theoretical background is given and validating investigation are undertaken focused on the moving vehicles and person out of vehicle in tunnel, which are the official major objects to be detected. Two scenarios are set up: (1) training and prediction in the same tunnel (2) training in a tunnel and prediction in the other tunnel. From the both cases, targeted object detection in prediction mode are achieved to detectable rate to higher than 80% in case of similar time period between training and prediction but it shows a bit low detectable rate to 40% when the prediction times are far from the training time without further training taking place. However, it is believed that the AI based system would be enhanced in its predictability automatically as further training are followed with accumulated CCTV BigData without any revision or calibration of the incident detection system.
Previously common users just want to watch the video contents without any specific requirements or purposes. However, in today's life while watching video user attempts to know and discover more about things that appear on the video. Therefore, the requirements for finding multimedia or browsing information of objects that users want, are spreading with the increasing use of multimedia such as videos which are not only available on the internet-capable devices such as computers but also on smart TV and smart phone. In order to meet the users. requirements, labor-intensive annotation of objects in video contents is inevitable. For this reason, many researchers have actively studied about methods of annotating the object that appear on the video. In keyword-based annotation related information of the object that appeared on the video content is immediately added and annotation data including all related information about the object must be individually managed. Users will have to directly input all related information to the object. Consequently, when a user browses for information that related to the object, user can only find and get limited resources that solely exists in annotated data. Also, in order to place annotation for objects user's huge workload is required. To cope with reducing user's workload and to minimize the work involved in annotation, in existing object-based annotation automatic annotation is being attempted using computer vision techniques like object detection, recognition and tracking. By using such computer vision techniques a wide variety of objects that appears on the video content must be all detected and recognized. But until now it is still a problem facing some difficulties which have to deal with automated annotation. To overcome these difficulties, we propose a system which consists of two modules. The first module is the annotation module that enables many annotators to collaboratively annotate the objects in the video content in order to access the semantic data using Linked Data. Annotation data managed by annotation server is represented using ontology so that the information can easily be shared and extended. Since annotation data does not include all the relevant information of the object, existing objects in Linked Data and objects that appear in the video content simply connect with each other to get all the related information of the object. In other words, annotation data which contains only URI and metadata like position, time and size are stored on the annotation sever. So when user needs other related information about the object, all of that information is retrieved from Linked Data through its relevant URI. The second module enables viewers to browse interesting information about the object using annotation data which is collaboratively generated by many users while watching video. With this system, through simple user interaction the query is automatically generated and all the related information is retrieved from Linked Data and finally all the additional information of the object is offered to the user. With this study, in the future of Semantic Web environment our proposed system is expected to establish a better video content service environment by offering users relevant information about the objects that appear on the screen of any internet-capable devices such as PC, smart TV or smart phone.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.