• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.03 seconds

Area Classification, Identification and Tracking for Multiple Moving Objects with the Similar Colors (유사한 색상을 지닌 다수의 이동 물체 영역 분류 및 식별과 추적)

  • Lee, Jung Sik;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.477-486
    • /
    • 2016
  • This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Pose Estimation and Image Matching for Tidy-up Task using a Robot Arm (로봇 팔을 활용한 정리작업을 위한 물체 자세추정 및 이미지 매칭)

  • Piao, Jinglan;Jo, HyunJun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.4
    • /
    • pp.299-305
    • /
    • 2021
  • In this study, the task of robotic tidy-up is to clean the current environment up exactly like a target image. To perform a tidy-up task using a robot, it is necessary to estimate the pose of various objects and to classify the objects. Pose estimation requires the CAD model of an object, but these models of most objects in daily life are not available. Therefore, this study proposes an algorithm that uses point cloud and PCA to estimate the pose of objects without the help of CAD models in cluttered environments. In addition, objects are usually detected using a deep learning-based object detection. However, this method has a limitation in that only the learned objects can be recognized, and it may take a long time to learn. This study proposes an image matching based on few-shot learning and Siamese network. It was shown from experiments that the proposed method can be effectively applied to the robotic tidy-up system, which showed a success rate of 85% in the tidy-up task.

Design and Implementation of a Hardware Accelerator for Marine Object Detection based on a Binary Segmentation Algorithm for Ship Safety Navigation (선박안전 운항을 위한 이진 분할 알고리즘 기반 해상 객체 검출 하드웨어 가속기 설계 및 구현)

  • Lee, Hyo-Chan;Song, Hyun-hak;Lee, Sung-ju;Jeon, Ho-seok;Kim, Hyo-Sung;Im, Tae-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1331-1340
    • /
    • 2020
  • Object detection in maritime means that the captain detects floating objects that has a risk of colliding with the ship using the computer automatically and as accurately as human eyes. In conventional ships, the presence and distance of objects are determined through radar waves. However, it cannot identify the shape and type. In contrast, with the development of AI, cameras help accurately identify obstacles on the sea route with excellent performance in detecting or recognizing objects. The computer must calculate high-volume pixels to analyze digital images. However, the CPU is specialized for sequential processing; the processing speed is very slow, and smooth service support or security is not guaranteed. Accordingly, this study developed maritime object detection software and implemented it with FPGA to accelerate the processing of large-scale computations. Additionally, the system implementation was improved through embedded boards and FPGA interface, achieving 30 times faster performance than the existing algorithm and a three-times faster entire system.

Cat Behavior Pattern Analysis and Disease Prediction System of Home CCTV Images using AI (AI를 이용한 홈CCTV 영상의 반려묘 행동 패턴 분석 및 질병 예측 시스템 연구)

  • Han, Su-yeon;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1266-1271
    • /
    • 2022
  • Cats have strong wildness so they have a characteristic of hiding diseases well. The disease may have already worsened when the guardian finds out that the cat has a disease. It will be of great help in treating the cat's disease if the owner can recognize the cat's polydipsia, polyuria, and frequent urination more quickly. In this paper, 1) Efficient version of DeepLabCut for pose estimation, 2) YOLO v4 for object detection, 3) LSTM is used for behavior prediction, and 4) BoT-SORT is used for object tracking running on an artificial intelligence device. Using artificial intelligence technology, it predicts the cat's next, polyuria and frequency of urination through the analysis of the cat's behavior pattern from the home CCTV video and the weight sensor of the water bowl. And, through analysis of cat behavior patterns, we propose an application that reports disease prediction and abnormal behavior to the guardian and delivers it to the guardian's mobile and the server system.

Performance Evaluation Involving Multiple Parameters in Built-In-Test Systems

  • Kang, Hee-Jung;Yoo, Wang-Jin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.148-158
    • /
    • 1991
  • The Built-In-Test (BIT) system is an integrated subsystem for the determination of the health status of any primary system. The BIT consists of hardware and software installations directed at performance of the functions of fault detection, diagnosis and isolation, as well as primary system record failure information. Evaluation of the difinitions appropriate to the BIT system, including system characteristics and parameters, is important to an understanding of system functions. The object of this paper is to present general definitions of the BIT diagnosis parameters and a semiquantiative evaluation method for BIT systems. Finally, two case studies for actual problem solutions are included.

  • PDF

Development of a Fuzzy Logic-based Fault Identification System In Distribution System (퍼지 논리 적용에 의한 배전계통의 고장 검출 시스템 개발)

  • Kim, Chang-Jong;Oh, Yong-Taek
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.737-739
    • /
    • 1996
  • Abnormal conditions and disturbances in distribution system cause an immediate influence to the customers. Conventional detection schemes for the distribution abnormalities have been applied in limited extents mainly because of their low reliability. In this paper, we developed a disturbance identification system which monitors the load level after a transient, checks the harmonic behavior of the load, and finally makes decision on the cause of the disturbance. This system identifies and discriminates overcurrent faults, arcing ground faults, recloser activities, and foreign object or tree contacts. In the implementation of the identification system, we applied fuzzy logic to better represent some variables whose Quantities are expressed only in non-numerical terms.

  • PDF

Vision-based Real-time Vehicle Detection and Tracking Algorithm for Forward Collision Warning (전방 추돌 경보를 위한 영상 기반 실시간 차량 검출 및 추적 알고리즘)

  • Hong, Sunghoon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.962-970
    • /
    • 2021
  • The cause of the majority of vehicle accidents is a safety issue due to the driver's inattention, such as drowsy driving. A forward collision warning system (FCWS) can significantly reduce the number and severity of accidents by detecting the risk of collision with vehicles in front and providing an advanced warning signal to the driver. This paper describes a low power embedded system based FCWS for safety. The algorithm computes time to collision (TTC) through detection, tracking, distance calculation for the vehicle ahead and current vehicle speed information with a single camera. Additionally, in order to operate in real time even in a low-performance embedded system, an optimization technique in the program with high and low levels will be introduced. The system has been tested through the driving video of the vehicle in the embedded system. As a result of using the optimization technique, the execution time was about 170 times faster than that when using the previous non-optimized process.

Intruder Detection System Based on Pyroelectric Infrared Sensor (PIR 센서 기반 침입감지 시스템)

  • Jeong, Yeon-Woo;Vo, Huynh Ngoc Bao;Cho, Seongwon;Cuhng, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.361-367
    • /
    • 2016
  • The intruder detection system using digital PIR sensor has the problem that it can't recognize human correctly. In this paper, we suggest a new intruder detection system based on analog PIR sensor to get around the drawbacks of the digital PIR sensor. The analog type PIR sensor emits the voltage output at various levels whereas the output of the digitial PIR sensor is binary. The signal captured using analog PIR sensor is sampled, and its frequency feature is extracted using FFT or MFCC. The extracted features are used for the input of neural networks. After neural network is trained using various human and pet's intrusion data, it is used for classifying human and pet in the intrusion situation.

A Study on the Improvement of Metal Detector Equipment Standards by Aviation Security Level (항공보안 등급별 금속탐지장비 기준 개선 방안 연구)

  • Ryu, Hanseul;Park, Hanjun;Kim, Yosik;Choi, YongHun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2021
  • The detection sensitivity of a Walk Through Metal Detector (WTMD) currently being developed and operated in Korea differs from one manufacturer to another, making it difficult for them to be used based on Aviation Security level. In addition, the FAA 3-GUN Test approved by the domestic aviation authority for aviation security supervision is a single test object. There is no Operational Test Piece (OTP) consisting of multiple test objects for the operation of aviation security for a WTMD. This paper, the detection sensitivity of a WTMD applied by a commercial OTP was measured and detection sensitivity standards for a WTMD were developed based on results of measurement. Furthermore, institutional plans to maintain the same detection sensitivity for domestic aviation security were made through suggestions for Korean standards OTP development methods, taking characteristics of the aviation field into consideration.

Optimal Parameter Analysis and Evaluation of Change Detection for SLIC-based Superpixel Techniques Using KOMPSAT Data (KOMPSAT 영상을 활용한 SLIC 계열 Superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교)

  • Chung, Minkyung;Han, Youkyung;Choi, Jaewan;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1427-1443
    • /
    • 2018
  • Object-based image analysis (OBIA) allows higher computation efficiency and usability of information inherent in the image, as it reduces the complexity of the image while maintaining the image properties. Superpixel methods oversegment the image with a smaller image unit than an ordinary object segment and well preserve the edges of the image. SLIC (Simple linear iterative clustering) is known for outperforming the previous superpixel methods with high image segmentation quality. Although the input parameter for SLIC, number of superpixels has considerable influence on image segmentation results, impact analysis for SLIC parameter has not been investigated enough. In this study, we performed optimal parameter analysis and evaluation of change detection for SLIC-based superpixel techniques using KOMPSAT data. Forsuperpixel generation, three superpixel methods (SLIC; SLIC0, zero parameter version of SLIC; SNIC, simple non-iterative clustering) were used with superpixel sizes in ranges of $5{\times}5$ (pixels) to $50{\times}50$ (pixels). Then, the image segmentation results were analyzed for how well they preserve the edges of the change detection reference data. Based on the optimal parameter analysis, image segmentation boundaries were obtained from difference image of the bi-temporal images. Then, DBSCAN (Density-based spatial clustering of applications with noise) was applied to cluster the superpixels to a certain size of objects for change detection. The changes of features were detected for each superpixel and compared with reference data for evaluation. From the change detection results, it proved that better change detection can be achieved even with bigger superpixel size if the superpixels were generated with high regularity of size and shape.