• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.028 seconds

Important Facility Guard System Using Edge Computing for LiDAR (LiDAR용 엣지 컴퓨팅을 활용한 중요시설 경계 시스템)

  • Jo, Eun-Kyung;Lee, Eun-Seok;Shin, Byeong-Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.345-352
    • /
    • 2022
  • Recent LiDAR(Light Detection And Ranging) sensor is used for scanning object around in real-time. This sensor can detect movement of the object and how it has changed. As the production cost of the sensors has been decreased, LiDAR begins to be used for various industries such as facility guard, smart city and self-driving car. However, LiDAR has a large input data size due to its real-time scanning process. So another way for processing a large amount of data are needed in LiDAR system because it can cause a bottleneck. This paper proposes edge computing to compress massive point cloud for processing quickly. Since laser's reflection range of LiDAR sensor is limited, multiple LiDAR should be used to scan a large area. In this reason multiple LiDAR sensor's data should be processed at once to detect or recognize object in real-time. Edge computer compress point cloud efficiently to accelerate data processing and decompress every data in the main cloud in real-time. In this way user can control LiDAR sensor in the main system without any bottleneck. The system we suggest solves the bottleneck which was problem on the cloud based method by applying edge computing service.

Development of Real-time Video Search System Using the Intelligent Object Recognition Technology (지능형 객체 인식 기술을 이용한 실시간 동영상 검색시스템)

  • Chang, Jae-Young;Kang, Chan-Hyeok;Yoon, Jae-Min;Cho, Jae-Won;Jung, Ji-Sung;Chun, Jonghoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.85-91
    • /
    • 2020
  • Recently, video-taping equipment such as CCTV have been seeing more use for crime prevention and general safety concerns. Since these video-taping equipment operates all throughout the day, the need for security personnel is lessened, and naturally costs incurred from managing such manpower should also decrease. However, technology currently used predominantly lacks self-sufficiency when given the task of searching for a specific object in the recorded video such as a person, and has to be done manually; current security-based video equipment is insufficient in an environment where real-time information retrieval is required. In this paper, we propose a technology that uses the latest deep-learning technology and OpenCV library to quickly search for a specific person in a video; the search is based on the clothing information that is inputted by the user and transmits the result in real time. We implemented our system to automatically recognize specific human objects in real time by using the YOLO library, whilst deep learning technology is used to classify human clothes into top/bottom clothes. Colors are also detected through the OpenCV library which are then all combined to identify the requested object. The system presented in this paper not only accurately and quickly recognizes a person object with a specific clothing, but also has a potential extensibility that can be used for other types of object recognition in a video surveillance system for various purposes.

Microwave Tomography Analysis System for Breast Cancer Detection (전자파 기반 유방암 진단을 위한 토모그램 분석 시스템)

  • Kwon, Ki-Chul;Yoo, Kwan-Hee;Kim, Nam;Son, Seong-Ho;Jeon, Soon-Ik
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.19-26
    • /
    • 2009
  • The microwave exposure device for microwave breast cancer detection consists of RF transceiver and several antennas. The microwave information of object acquired from the microwave exposure device can be calculated permittivity and conductivity by using the inverse scattered analysis. In this paper, we have developed the software for detecting breast cancers based on microwave tomography, by which users not only can check out the existence of breast cancers through the permittivity and conductivity information analysis of the object's internal, but also can analysis easily information for distribution of breast cancers. The developed software provides the function for visualizing the captured permittivity and conductivity information as 2D or 3D color images on which users can easily detect the existence of breast cancers. For more detailed analysis of tomography images, the proposed software also has provided the functions for displaying their cutting profiles as well as position and size information of special area in them.

Context Driven Real-Time Laser Pointer Detection and Tracking (상황 기반의 실시간 레이저 포인터 검출과 추적)

  • Kang, Sung-Kwan;Chung, Kyung-Yong;Park, Yang-Jae;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.211-216
    • /
    • 2012
  • There are two kinks of processes could detect the laser pointer. One is the process which detects the location of the pointer. the other one is a possibility of dividing with the process which converts the coordinate of the laser pointer which is input in coordinate of the monitor. The previous Mean-Shift algorithm is not appropriately for real-time video image to calculate many quantity. In this paper, we proposed the context driven real-time laser pointer detection and tracking. The proposed method is a possibility of getting the result which is fixed from the situation which the background and the background which are complicated dynamically move. In the actual environment, we can get to give constant results when the object come in, when going out at forecast boundary. Ultimately, this paper suggests empirical application to verify the adequacy and the validity with the proposed method. Accordingly, the accuracy and the quality of image recognition will be improved the surveillance system.

A New Image Processing-Based Fragment Detection Approach for Arena Fragmentation Test (Arena 시험을 위한 영상처리 기반 탄두 파편 검출 기법)

  • Lee, Hyukzae;Jung, Chanho;Park, Yongchan;Park, Woong;Son, Jihong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.599-606
    • /
    • 2019
  • The Arena Fragmentation Test(AFT) is one of the important tasks for designing a high-explosive warhead. In order to measure the statistics of a warhead in the test, fragments of a warhead that penetrate steel plates are detected by using complex and expensive measuring equipment. In this paper, instead of using specific hardware to measure the statistics of a warhead, we propose to use an image processing based object detection algorithm to detect fragments in AFT. To this end, we use a hard-thresholding method with a brightness feature and apply a morphology filter to remove noise components. We also propose a simple yet effective temporal filtering method to detect only the first penetrating fragments. We show that the performance of the proposed method is comparable to that of a hardware system under the same experimental conditions. Furthermore, the proposed method can produce better results in terms of finding exact positions of fragments.

Anomaly Detection Method Based on Trajectory Classification in Surveillance Systems (감시 시스템에서 궤적 분류를 이용한 이상 탐지 방법)

  • Jeonghun Seo;Jiin Hwang;Pal Abhishek;Haeun Lee;Daesik Ko;Seokil Song
    • Journal of Platform Technology
    • /
    • v.12 no.3
    • /
    • pp.62-70
    • /
    • 2024
  • Recent surveillance systems employ multiple sensors, such as cameras and radars, to enhance the accuracy of intrusion detection. However, object recognition through camera (RGB, Thermal) sensors may not always be accurate during nighttime, in adverse weather conditions, or when the intruder is camouflaged. In such situations, it is possible to detect intruders by utilizing the trajectories of objects extracted from camera or radar sensors. This paper proposes a method to detect intruders using only trajectory information in environments where object recognition is challenging. The proposed method involves training an LSTM-Attention based trajectory classification model using normal and abnormal (intrusion, loitering) trajectory data of animals and humans. This model is then used to identify abnormal human trajectories and perform intrusion detection. Finally, the validity of the proposed method is demonstrated through experiments using real data.

  • PDF

A Study on Intelligent Robot Bin-Picking System with CCD Camera and Laser Sensor (CCD카메라와 레이저 센서를 조합한 지능형 로봇 빈-피킹에 관한 연구)

  • Kim, Jin-Dae;Lee, Jeh-Won;Shin, Chan-Bai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.58-67
    • /
    • 2006
  • Due to the variety of signal processing and complicated mathematical analysis, it is not easy to accomplish 3D bin-picking with non-contact sensor. To solve this difficulties the reliable signal processing algorithm and a good sensing device has been recommended. In this research, 3D laser scanner and CCD camera is applied as a sensing device respectively. With these sensor we develop a two-step bin-picking method and reliable algorithm for the recognition of 3D bin object. In the proposed bin-picking, the problem is reduced to 2D intial recognition with CCD camera at first, and then 3D pose detection with a laser scanner. To get a good movement in the robot base frame, the hand eye calibration between robot's end effector and sensing device should be also carried out. In this paper, we examine auto-calibration technique in the sensor calibration step. A new thinning algorithm and constrained hough transform is also studied for the robustness in the real environment usage. From the experimental results, we could see the robust bin-picking operation under the non-aligned 3D hole object.

A study of effective contents construction for AR based English learning (AR기반 영어학습을 위한 효과적 콘텐츠 구성 방향에 대한 연구)

  • Kim, Young-Seop;Jeon, Soo-Jin;Lim, Sang-Min
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.4
    • /
    • pp.143-147
    • /
    • 2011
  • The system using augmented reality can save the time and cost. It is verified in various fields under the possibility of a technology by solving unrealistic feeling in the virtual space. Therefore, augmented reality has a variety of the potential to be used. Generally, multimodal senses such as visual/auditory/tactile feed back are well known as a method for enhancing the immersion in case of interaction with virtual object. By adapting tangible object we can provide touch sensation to users. a 3D model of the same scale overlays the whole area of the tangible object; thus, the marker area is invisible. This contributes to enhancing immersive and natural images to users. Finally, multimodal feedback also creates better immersion. In this paper, sound feedback is considered. By further improving immersion learning augmented reality for children with the initial step learning content is presented. Augmented reality is in the intermediate stages between future world and real world as well as its adaptability is estimated more than virtual reality.

  • PDF

Implementation of augmented reality using parallel structure (병렬구조를 이용한 증강현실 구현)

  • Park, Tae-Ryong;Heo, Hoon;Kwak, Jae-Chang
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.371-377
    • /
    • 2013
  • This thesis propose an efficient parallel structure method for implementing a FAST and BRIEF algorithm based Augmented Reality. SURF algorithm that is well known in the object recognition algorithms is robust in object recognition. However, there is a disadvantage for real time operation because, SURF implementation requires a lot of computation. Therefore, we used a FAST and BRIEF algorithm for object recognition, and we improved Conventional Parallel Structure based on OpenMP Library. As a result, it achieves a 70%~100% improvement in execution time on the embedded system.

A Study on Efficient Learning Units for Behavior-Recognition of People in Video (비디오에서 동체의 행위인지를 위한 효율적 학습 단위에 관한 연구)

  • Kwon, Ick-Hwan;Hadjer, Boubenna;Lee, Dohoon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.196-204
    • /
    • 2017
  • Behavior of intelligent video surveillance system is recognized by analyzing the pattern of the object of interest by using the frame information of video inputted from the camera and analyzes the behavior. Detection of object's certain behaviors in the crowd has become a critical problem because in the event of terror strikes. Recognition of object's certain behaviors is an important but difficult problem in the area of computer vision. As the realization of big data utilizing machine learning, data mining techniques, the amount of video through the CCTV, Smart-phone and Drone's video has increased dramatically. In this paper, we propose a multiple-sliding window method to recognize the cumulative change as one piece in order to improve the accuracy of the recognition. The experimental results demonstrated the method was robust and efficient learning units in the classification of certain behaviors.