• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.03 seconds

Intelligent CCTV for Port Safety, "Smart Eye" (항만 안전을 위한 지능형 CCTV, "Smart Eye")

  • Baek, Seung-Ho;Ji, Yeong-Il;Choi, Han-Saem
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.1056-1058
    • /
    • 2022
  • 본 연구는 항만에서 안전 수칙을 위반하여 발생하는 사고 및 이상행동을 실시간 탐지를 수행한 후 위험 상황을 관리자가 신속하고 정확하게 대처할 수 있도록 지원하는 지능형 CCTV, Smart Eye를 제안한다. Smart Eye는 컴퓨터 비전(Computer Vision) 기반의 다양한 객체 탐지(Object Detection) 모델과 행동 인식(Action Recognition) 모델을 통해 낙하 및 전도사고, 안전 수칙 미준수 인원, 폭력적인 행동을 보이는 인원을 복합적으로 판단하며, 객체 추적(Object Tracking), 관심 영역(Region of Interest), 객체 간의 거리 측정 알고리즘을 구현하여, 제한구역 접근, 침입, 배회, 안전 보호구 미착용 인원 그리고 화재 및 충돌사고 위험도를 측정한다. 해당 연구를 통한 자동화된 24시간 감시체계는 실시간 영상 데이터 분석 및 판단 처리 과정을 거친 후 각 장소에서 수집된 데이터를 관리자에게 신속히 전달하고 항만 내 통합관제센터에 접목함으로써 효율적인 관리 및 운영할 수 있게 하는 '지능형 인프라'를 구축할 수 있다. 이러한 체계는 곧 스마트 항만 시스템 도입에 이바지할 수 있을 것으로 기대된다.

A Study on the Web Building Assistant System Using GUI Object Detection and Large Language Model (웹 구축 보조 시스템에 대한 GUI 객체 감지 및 대규모 언어 모델 활용 연구)

  • Hyun-Cheol Jang;Hyungkuk Jang
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.830-833
    • /
    • 2024
  • As Large Language Models (LLM) like OpenAI's ChatGPT[1] continue to grow in popularity, new applications and services are expected to emerge. This paper introduces an experimental study on a smart web-builder application assistance system that combines Computer Vision with GUI object recognition and the ChatGPT (LLM). First of all, the research strategy employed computer vision technology in conjunction with Microsoft's "ChatGPT for Robotics: Design Principles and Model Abilities"[2] design strategy. Additionally, this research explores the capabilities of Large Language Model like ChatGPT in various application design tasks, specifically in assisting with web-builder tasks. The study examines the ability of ChatGPT to synthesize code through both directed prompts and free-form conversation strategies. The researchers also explored ChatGPT's ability to perform various tasks within the builder domain, including functions and closure loop inferences, basic logical and mathematical reasoning. Overall, this research proposes an efficient way to perform various application system tasks by combining natural language commands with computer vision technology and LLM (ChatGPT). This approach allows for user interaction through natural language commands while building applications.

Image Detection System for Leakage Regions of Hydraulic Fluid in Faring Press Machine (단조프레스기의 유압유 누유영역 영상 감지 시스템)

  • Bae, Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1557-1562
    • /
    • 2009
  • In the hydraulic room of a forging press machine, a system which can detect and prevent risks at its early stage is needed because there may be a leakage due to the damage of the connection parts of the piping which can endanger human life and mechanical damage. In this paper, the system to automatically recognize a leakage of hydraulic fluid in terms of using the pan/tilt camera from a remote place is implemented. It finds the bounding boxes which are recognized with object regions in the process of labeling and detects the proper leakage regions of hydraulic fluid with the ratios of width and height of the bounding boxes and compactness of the leakage shape. Also, it performs noise removal and calibration for transition and rotation of image as a preprocessing process. The experimental results show that the proposed system has been verified to detect the leakage regions accurately in various sources of light.

  • PDF

Motion Recognition of Worker Based on Frame Difference (프레임간 차를 기반으로 한 작업자의 동작인식)

  • 김형균;정기봉;오무송
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1280-1286
    • /
    • 2001
  • In this Study, we try to suggest a system that recognize worker's regular motion more effectively First, based on frame difference that separates still background from movable object to video that make a film of worker's motion. The next, with edge detection, estimating the center of motion could recognize continuous motion. By action cognition system that design in this research films worker's action using fixed CCTV to supplement problem of action awareness system that is applied in existent industry spot, various mountings to get action information minimized. Also, shorten session that need in awareness enforcing action awareness through image subtraction and edge detection between frame to reduce time necessary to draw worker's body part special quality, expense designed inexpensive action cognition system as being efficient.

  • PDF

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

Object Search Using Synchronous Ultrasonic Wave Emission for the Blind Guide system (시각장애인 안내 시스템을 위한 복수 초음파센서 동시 조사에 의한 장애물 검색)

  • Kim, Chang-Geol;Song, Byung-Seop
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.384-391
    • /
    • 2008
  • For use in the guide system for the people who are visually impaired, an obstacle searching device using synchronous ultrasonic wave emission was proposed and developed. Generally, the conventional obstacle detection methods use the ultrasonic distance measuring device with successive scan method. However, the scan method causes a theoretical error and it couldn't estimate accurate obstacle distances. The proposed synchronous firing method use the plural number of ultrasonic sensors which emit ultrasonic wave simultaneously and estimate the distance to the closest obstacle relatively accurately. We analytically analyzed the errors of the conventional and proposed methods and compared the quantitative differences of the errors. The differences verified by obstacle search experiments. Using the proposed ultrasonic wave synchronous firing method, 3 dimensional obstacle location estimating device was designed and implemented. The results of the 3 dimensional obstacle detecting experiments showed the proposed method had good performances and it would be sufficiently use in the guide system for the people who are visually impaired.

Vision based Monitoring System for Safety in Railway Station (철도역사 안전을 위한 비전기반 승강장 모니터링 시스템)

  • Oh, Seh-Chan;Park, Sung-Hyuk;Lee, Chang-Mu
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.953-958
    • /
    • 2007
  • Passenger safety is a primary concern of railway system but, it has been urgent issue that dozens of people are killed every year when they are fallen from train platforms. In this paper, we propose a vision based monitoring system for railway station platform. The system immediately perceives dangerous factors of passengers on the platform by using image processing technology. To monitor almost entire length of the track line in the platform, we use several video cameras. Each camera conducts surveillance its own preset monitoring area whether human or dangerous object was fallen in the area. Moreover, to deal with the accident immediately, the system provides local station, central control room employees and train driver with the video information about the accident situation including alarm message. This paper introduces the system overview and detection process with experimental results. According to the results, we expect the proposed system will play a key role for establishing highly intelligent monitoring system in railway.

  • PDF

Convenient View Calibration of Multiple RGB-D Cameras Using a Spherical Object (구형 물체를 이용한 다중 RGB-D 카메라의 간편한 시점보정)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.309-314
    • /
    • 2014
  • To generate a complete 3D model from depth images of multiple RGB-D cameras, it is necessary to find 3D transformations between RGB-D cameras. This paper proposes a convenient view calibration technique using a spherical object. Conventional view calibration methods use either planar checkerboards or 3D objects with coded-pattern. In these conventional methods, detection and matching of pattern features and codes takes a significant time. In this paper, we propose a convenient view calibration method using both 3D depth and 2D texture images of a spherical object simultaneously. First, while moving the spherical object freely in the modeling space, depth and texture images of the object are acquired from all RGB-D camera simultaneously. Then, the external parameters of each RGB-D camera is calibrated so that the coordinates of the sphere center coincide in the world coordinate system.

A Content-Based Image Retrieval using Object Segmentation Method (물체 분할 기법을 이용한 내용기반 영상 검색)

  • 송석진;차봉현;김명호;남기곤;이상욱;주재흠
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various methods have been studying to maintain and apply the multimedia inform abruptly increasing over all social fields, in recent years. For retrieval of still images, we is implemented content-based image retrieval system in this paper that make possible to retrieve similar objects from image database after segmenting query object from background if user request query. Query image is processed median filtering to remove noise first and then object edge is detected it by canny edge detection. And query object is segmented from background by using convex hull. Similarity value can be obtained by means of histogram intersection with database image after securing color histogram from segmented image. Also segmented image is processed gray convert and wavelet transform to extract spacial gray distribution and texture feature. After that, Similarity value can be obtained by means of banded autocorrelogram and energy. Final similar image can be retrieved by adding upper similarity values that it make possible to not only robust in background but also better correct object retrieval by using object segmentation method.

  • PDF

A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs

  • Kaya, Emine;Gunec, Huseyin Gurkan;Aydin, Kader Cesur;Urkmez, Elif Seyda;Duranay, Recep;Ates, Hasan Fehmi
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.275-281
    • /
    • 2022
  • Purpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs. Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion matrix was used to evaluate the performance of the model. Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average YOLOv4 inference time was 90 ms. Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners find more accurate treatment options while saving time and effort