• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.028 seconds

The Mirror-based real-time dynamic projection mapping design and dynamic object detection system research (미러 방식의 실시간 동적 프로젝션 매핑 설계 및 동적 사물 검출 시스템 연구)

  • Soe-Young Ahn;Bum-Suk Seo;Sung Dae Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.85-91
    • /
    • 2024
  • In this paper, we studied projection mapping, which is being utilized as a digital canvas beyond space and time for theme parks, mega events, and exhibition performances. Since the existing projection technology used for fixed objects has the limitation that it is difficult to map moving objects in terms of utilization, it is urgent to develop a technology that can track and map moving objects and a real-time dynamic projection mapping system based on dynamically moving objects so that it can respond to various markets such as performances, exhibitions, and theme parks. In this paper, we propose a system that can track real-time objects in real time and eliminate the delay phenomenon by developing hardware and performing high-speed image processing. Specifically, we develop a real-time object image analysis and projection focusing control unit, an integrated operating system for a real-time object tracking system, and an image processing library for projection mapping. This research is expected to have a wide range of applications in the technology-intensive industry that utilizes real-time vision machine-based detection technology, as well as in the industry where cutting-edge science and technology are converged and produced.

Multi-Object Detection Using Image Segmentation and Salient Points (영상 분할 및 주요 특징 점을 이용한 다중 객체 검출)

  • Lee, Jeong-Ho;Kim, Ji-Hun;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.48-55
    • /
    • 2008
  • In this paper we propose a novel method for image retrieval system using image segmentation and salient points. The proposed method consists of four steps. In the first step, images are segmented into several regions by JSEG algorithm. In the second step, for the segmented regions, dominant colors and the corresponding color histogram are constructed. By using dominant colors and color histogram, we identify candidate regions where objects may exist. In the third step, real object regions are detected from candidate regions by SIFT matching. In the final step, we measure the similarity between the query image and DB image by using the color correlogram technique. Color correlogram is computed in the query image and object region of DB image. By experimental results, it has been shown that the proposed method detects multi-object very well and it provides better retrieval performance compared with object-based retrieval systems.

Three-dimensional object recognition using efficient indexing:Part I-bayesian indexing (효율적인 인덱싱 기법을 이용한 3차원 물체 인식:Part I-Bayesian 인덱싱)

  • 이준호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.10
    • /
    • pp.67-75
    • /
    • 1997
  • A design for a system to perform rapid recognition of three dimensional objects is presented, focusing on efficient indexing. In order to retrieve the best matched models without exploring all possible object matches, we have employed a bayesian framework. A decision-theoretic measure of the discriminatory power of a feature for a model object is defined in terms of posterior probability. Detectability of a featrue defined as a function of the feature itselt, viewpoint, sensor charcteristics, nd the feature detection algorithm(s) is also considered in the computation of discribminatory power. In order to speed up the indexing or selection of correct objects, we generate and verify the object hypotheses for rfeatures detected in a scene in the order of the discriminatory power of these features for model objects.

  • PDF

The Implementation of the Realtime Visual Tracking of Moving Terget by using Kalman Filter (칼만필터를 이용한 이동 목표물의 실시간 시각추적의 구현)

  • 임양남;방두열;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.254-258
    • /
    • 1996
  • In this paper, we proposed realtime visual tracking system of moving object for 2D target using extended Kalman Filter Algorithm. A targeting marker are recongnized in each image frame and positions of targer object in each frame from a CCD camera while te targeting marker is attached to the tip of the SCARA robot hand. After the detection of a target coming into any position of the field-of-view, the target is tracked and always made to be located at the center of target window. Then, we can track the moving object which moved in inter-frames. The experimental results show the effectiveness of the Kalman filter algorithm for realtime tracking and estimated state value of filter, predicting the position of moving object to minimize an image processing area, and by reducing the effect by quantization noise of image

  • PDF

Development of Non-Contacting Automatic Inspection Technology of Precise Parts (정밀부품의 비접촉 자동검사기술 개발)

  • Lee, Woo-Sung;Han, Sung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.110-116
    • /
    • 2007
  • This paper presents a new technique to implement the real-time recognition for shapes and model number of parts based on an active vision approach. The main focus of this paper is to apply a technique of 3D object recognition for non-contacting inspection of the shape and the external form state of precision parts based on the pattern recognition. In the field of computer vision, there have been many kinds of object recognition approaches. And most of these approaches focus on a method of recognition using a given input image (passive vision). It is, however, hard to recognize an object from model objects that have similar aspects each other. Recently, it has been perceived that an active vision is one of hopeful approaches to realize a robust object recognition system. The performance is illustrated by experiment for several parts and models.

Sensor Fusion Docking System of Drone and Ground Vehicles Using Image Object Detection (영상 객체 검출을 이용한 드론과 지상로봇의 센서 융합 도킹 시스템)

  • Beck, Jong-Hwan;Park, Hee-Su;Oh, Se-Ryeong;Shin, Ji-Hun;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.217-222
    • /
    • 2017
  • Recent studies for working robot in dangerous places have been carried out on large unmanned ground vehicles or 4-legged robots with the advantage of long working time, but it is difficult to apply in practical dangerous fields which require the real-time system with high locomotion and capability of delicate working. This research shows the collaborated docking system of drone and ground vehicles which combines image processing algorithm and laser sensors for effective detection of docking markers, and is finally capable of moving a long distance and doing very delicate works. We proposed the docking system of drone and ground vehicles with sensor fusion which also suggests two template matching methods appropriate for this application. The system showed 95% docking success rate in 50 docking attempts.

Development of Personal Mobility Safety Driving Assistance System Using CNN-Based Object Detection and Boarding Detection Sensor (합성곱 신경망 기반 물체 인식과 탑승 감지 센서를 이용한 개인형 이동수단 주행 안전 보조 시스템 개발)

  • Son, Kwon Joong;Bae, Sung Hoon;Lee, Hyun June
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.211-218
    • /
    • 2021
  • A recent spread of personal mobility devices such as electric kickboards has brought about a rapid increase in accident cases. Such vehicles are susceptible to falling accidents due to their low dynamic stability and lack of outer protection chassis. This paper presents the development of an automatic emergency braking system and a safe starting system as driving assistance devices for electric kickboards. The braking system employed artificial intelligence to detect nearby threaening objects. The starting system was developed to disable powder to the motor until when the driver's boarding is confirmed. This study is meaningful in that it proposes the convergence technology of advanced driver assistance systems specialized for personal mobility devices.

Moving Object Detection using Clausius Entropy and Adaptive Gaussian Mixture Model (클라우지우스 엔트로피와 적응적 가우시안 혼합 모델을 이용한 움직임 객체 검출)

  • Park, Jong-Hyun;Lee, Gee-Sang;Toan, Nguyen Dinh;Cho, Wan-Hyun;Park, Soon-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • A real-time detection and tracking of moving objects in video sequences is very important for smart surveillance systems. In this paper, we propose a novel algorithm for the detection of moving objects that is the entropy-based adaptive Gaussian mixture model (AGMM). First, the increment of entropy generally means the increment of complexity, and objects in unstable conditions cause higher entropy variations. Hence, if we apply these properties to the motion segmentation, pixels with large changes in entropy in moments have a higher chance in belonging to moving objects. Therefore, we apply the Clausius entropy theory to convert the pixel value in an image domain into the amount of energy change in an entropy domain. Second, we use an adaptive background subtraction method to detect moving objects. This models entropy variations from backgrounds as a mixture of Gaussians. Experiment results demonstrate that our method can detect motion object effectively and reliably.

Salient Object Detection via Multiple Random Walks

  • Zhai, Jiyou;Zhou, Jingbo;Ren, Yongfeng;Wang, Zhijian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1712-1731
    • /
    • 2016
  • In this paper, we propose a novel saliency detection framework via multiple random walks (MRW) which simulate multiple agents on a graph simultaneously. In the MRW system, two agents, which represent the seeds of background and foreground, traverse the graph according to a transition matrix, and interact with each other to achieve a state of equilibrium. The proposed algorithm is divided into three steps. First, an initial segmentation is performed to partition an input image into homogeneous regions (i.e., superpixels) for saliency computation. Based on the regions of image, we construct a graph that the nodes correspond to the superpixels in the image, and the edges between neighboring nodes represent the similarities of the corresponding superpixels. Second, to generate the seeds of background, we first filter out one of the four boundaries that most unlikely belong to the background. The superpixels on each of the three remaining sides of the image will be labeled as the seeds of background. To generate the seeds of foreground, we utilize the center prior that foreground objects tend to appear near the image center. In last step, the seeds of foreground and background are treated as two different agents in multiple random walkers to complete the process of salient object detection. Experimental results on three benchmark databases demonstrate the proposed method performs well when it against the state-of-the-art methods in terms of accuracy and robustness.

Analysis of Floating Population in Schools Using Open Source Hardware and Deep Learning-Based Object Detection Algorithm (오픈소스 하드웨어와 딥러닝 기반 객체 탐지 알고리즘을 활용한 교내 유동인구 분석)

  • Kim, Bo-Ram;Im, Yun-Gyo;Shin, Sil;Lee, Jin-Hyeok;Chu, Sung-Won;Kim, Na-Kyeong;Park, Mi-So;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.91-98
    • /
    • 2022
  • In this study, Pukyong National University's floating population survey and analysis were conducted using Raspberry Pie, an open source hardware, and object detection algorithms based on deep learning technology. After collecting images using Raspberry Pie, the person detection of the collected images using YOLO3's IMAGEAI and YOLOv5 models was performed, and Haar-like features and HOG models were used for accuracy comparison analysis. As a result of the analysis, the smallest floating population was observed due to the school anniversary. In general, the floating population at the entrance was larger than the floating population at the exit, and both the entrance and exit were found to be greatly affected by the school's anniversary and events.