• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.037 seconds

Image Objects Detection Method for the Embedded System (임베디드 시스템을 위한 영상객체의 검출방법)

  • Kim, Yun-Il;Rho, Seung-Ryong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.420-425
    • /
    • 2009
  • In this paper, image detection and recognition algorithms are studied with respect to embedded carrier system. There are many suggested techniques to detect and recognize objects. But they have the propensity to need much calculation for high hit rate. Advanced and modified method needs to study for embedded systems that low power consumption and real time response are requested. The proposed methods were implemented using Intel(R) Open Source Computer Vision Library provided by Intel Corporation. And they run and tested on embedded system using a ARM920T processor by cross-compiling. They showed 1.6sec response time and 95% hit rate and supported the automated moving carrier system smoothly.

A Method for Improving Object Recognition Using Pattern Recognition Filtering (패턴인식 필터링을 적용한 물체인식 성능 향상 기법)

  • Park, JinLyul;Lee, SeungGi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.122-129
    • /
    • 2016
  • There have been a lot of researches on object recognition in computer vision. The SURF(Speeded Up Robust Features) algorithm based on feature detection is faster and more accurate than others. However, this algorithm has a shortcoming of making an error due to feature point mismatching when extracting feature points. In order to increase a success rate of object recognition, we have created an object recognition system based on SURF and RANSAC(Random Sample Consensus) algorithm and proposed the pattern recognition filtering. We have also presented experiment results relating to enhanced the success rate of object recognition.

Occluded Object Motion Estimation System based on Particle Filter with 3D Reconstruction

  • Ko, Kwang-Eun;Park, Jun-Heong;Park, Seung-Min;Kim, Jun-Yeup;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.60-65
    • /
    • 2012
  • This paper presents a method for occluded object based motion estimation and tracking system in dynamic image sequences using particle filter with 3D reconstruction. A unique characteristic of this study is its ability to cope with partial occlusion based continuous motion estimation using particle filter inspired from the mirror neuron system in human brain. To update a prior knowledge about the shape or motion of objects, firstly, fundamental 3D reconstruction based occlusion tracing method is applied and object landmarks are determined. And optical flow based motion vector is estimated from the movement of the landmarks. When arbitrary partial occlusions are occurred, the continuous motion of the hidden parts of object can be estimated by particle filter with optical flow. The resistance of the resulting estimation to partial occlusions enables the more accurate detection and handling of more severe occlusions.

Design and Implementation of Safety system to prevent human accidents caused by low-speed vehicles (저속 주행 자동차에 의한 인명 사고 예방을 위한 안전 시스템의 설계 및 구현)

  • Kim, Hongsan;Mun, Taeeun;Paik, Seungmin;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.55-63
    • /
    • 2019
  • Proximity sensors and rearview cameras for automobile safety are common, but many accidents are still occurring. Using the All Around View and object recognition algorithm to show the front, back, left, right and bottom of the vehicle, the sensor detects the presence of a living body when the vehicle starts or parks, and displays the outside of the vehicle on the screen. In addition, the object recognition algorithm is used to visualize the object by expressing the position of the object. In this way, we propose a strong safety system that can prevent human accidents caused by the vehicle by sensing, screen, and expression.

A Study on Face Object Detection System using spatial color model (공간적 컬러 모델을 이용한 얼굴 객체 검출 시스템 연구)

  • Baek, Deok-Soo;Byun, Oh-Sung;Baek, Young-Hyun
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.30-38
    • /
    • 2006
  • This paper is used the color space distribution HMMD model presented in MPEG-7 in order to segment and detect the wanted image parts as a real time without the user's manufacturing in the video object segmentation. Here, it is applied the wavelet morphology to remove a small part that is regarded as a noise in image and a part excepting for the face image. Also, it did the optimal composition by the rough set. In this paper, tile proposed video object detection algorithm is confirmed to be superior as detecting the face object exactly than the conventional algorithm by applying those to the different size images.put the of paper here.

Multi-objects detection using HOG and effective individual object tracking (HOG를 이용한 다중객체 검출과 효과적인 개별객체 추적)

  • Choi, Min;Lee, Kyu-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.894-897
    • /
    • 2012
  • We propose a effective method using the HOG (Histogram of Oriented Gradients) feature vector to track individual objects in an environment which multiple objects are moving. The proposed algorithm consists of pre-processing, object detection and object tracking. We experimented with six videos which have various trajectories and the movement. When occlusion between objects was occurred, we identified individual object by using center and predicted coordinates of moving objects. The algorithm shows 85.45% of tracking rate in the videos we experimented. We expect the proposed system is utilized in security systems which require the alalysis of the position and motion pattern of objects.

  • PDF

Robust Object Detection Algorithm Using Spatial Gradient Information (SG 정보를 이용한 강인한 물체 추출 알고리즘)

  • Joo, Young-Hoon;Kim, Se-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.422-428
    • /
    • 2008
  • In this paper, we propose the robust object detection algorithm with spatial gradient information. To do this, first, we eliminate error values that appear due to complex environment and various illumination change by using prior methods based on hue and intensity from the input video and background. Visible shadows are eliminated from the foreground by using an RGB color model and a qualified RGB color model. And unnecessary values are eliminated by using the HSI color model. The background is removed completely from the foreground leaving a silhouette to be restored using spatial gradient and HSI color model. Finally, we validate the applicability of the proposed method using various indoor and outdoor conditions in a complex environments.

A Study on Image Labeling Technique for Deep-Learning-Based Multinational Tanks Detection Model

  • Kim, Taehoon;Lim, Dongkyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.58-63
    • /
    • 2022
  • Recently, the improvement of computational processing ability due to the rapid development of computing technology has greatly advanced the field of artificial intelligence, and research to apply it in various domains is active. In particular, in the national defense field, attention is paid to intelligent recognition among machine learning techniques, and efforts are being made to develop object identification and monitoring systems using artificial intelligence. To this end, various image processing technologies and object identification algorithms are applied to create a model that can identify friendly and enemy weapon systems and personnel in real-time. In this paper, we conducted image processing and object identification focused on tanks among various weapon systems. We initially conducted processing the tanks' image using a convolutional neural network, a deep learning technique. The feature map was examined and the important characteristics of the tanks crucial for learning were derived. Then, using YOLOv5 Network, a CNN-based object detection network, a model trained by labeling the entire tank and a model trained by labeling only the turret of the tank were created and the results were compared. The model and labeling technique we proposed in this paper can more accurately identify the type of tank and contribute to the intelligent recognition system to be developed in the future.

Development of Fire Detection Algorithm for Video Incident Detection System of Double Deck Tunnel (복층터널 영상유고감지시스템의 화재 감지 알고리즘 개발)

  • Kim, Tae-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1082-1087
    • /
    • 2019
  • Video Incident Detection System is a detection system for the purpose of detection of an emergency in an unexpected situation such as a pedestrian in a tunnel, a falling object, a stationary vehicle, a reverse run, and a fire(smoke and flame). In recent years, the importance of the city center has been emphasized by the construction of underpasses in great depth underground space. Therefore, in order to apply Video Incident Detection System to a Double Deck Tunnel, it was developed to reflect the design characteristics of the Double Deck Tunnel. and In this paper especially, the fire detection technology, which is not it is difficult to apply to the Double Deck Tunnel environment because it is not supported on existing Video Incident Detection System or has a fail detect, we propose fire detection using color image analysis, silhouette spread, and statistical properties, It is verified through a real fire test in a double deck tunnel test bed environment.

Identification of Underwater Objects using Sonar Image (소나영상을 이용한 수중 물체의 식별)

  • Kang, Hyunchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.91-98
    • /
    • 2016
  • Detection and classification of underwater objects in sonar imagery are challenging problems. This paper proposes a system that detects and identifies underwater objects at the sea floor level using a sonar image and image processing techniques. The identification process of underwater objects consists of two steps; detection of candidate regions and identification of underwater objects. The candidate regions of underwater objects are extracted by image registration through the detection of common feature points between the reference background image and the current scanning image. And then, underwater objects are identified as the closest pattern within the database using eigenvectors and eigenvalues as features. The proposed system is expected to be used in efficient securement of Q route in vessel navigation.