• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.024 seconds

Research on Artificial Intelligence Based De-identification Technique of Personal Information Area at Video Data (영상데이터의 개인정보 영역에 대한 인공지능 기반 비식별화 기법 연구)

  • In-Jun Song;Cha-Jong Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.19-25
    • /
    • 2024
  • This paper proposes an artificial intelligence-based personal information area object detection optimization method in an embedded system to de-identify personal information in video data. As an object detection optimization method, first, in order to increase the detection rate for personal information areas when detecting objects, a gyro sensor is used to collect the shooting angle of the image data when acquiring the image, and the image data is converted into a horizontal image through the collected shooting angle. Based on this, each learning model was created according to changes in the size of the image resolution of the learning data and changes in the learning method of the learning engine, and the effectiveness of the optimal learning model was selected and evaluated through an experimental method. As a de-identification method, a shuffling-based masking method was used, and double-key-based encryption of the masking information was used to prevent restoration by others. In order to reuse the original image, the original image could be restored through a security key. Through this, we were able to secure security for high personal information areas and improve usability through original image restoration. The research results of this paper are expected to contribute to industrial use of data without personal information leakage and to reducing the cost of personal information protection in industrial fields using video through de-identification of personal information areas included in video data.

The Power Line Deflection Monitoring System using Panoramic Video Stitching and Deep Learning (딥 러닝과 파노라마 영상 스티칭 기법을 이용한 송전선 늘어짐 모니터링 시스템)

  • Park, Eun-Soo;Kim, Seunghwan;Lee, Sangsoon;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • There are about nine million power line poles and 1.3 million kilometers of the power line for electric power distribution in Korea. Maintenance of such a large number of electric power facilities requires a lot of manpower and time. Recently, various fault diagnosis techniques using artificial intelligence have been studied. Therefore, in this paper, proposes a power line deflection detect system using artificial intelligence and computer vision technology in images taken by vision system. The proposed system proceeds as follows. (i) Detection of transmission tower using object detection system (ii) Histogram equalization technique to solve the degradation in image quality problem of video data (iii) In general, since the distance between two transmission towers is long, a panoramic video stitching process is performed to grasp the entire power line (iv) Detecting deflection using computer vision technology after applying power line detection algorithm This paper explain and experiment about each process.

Deep Learning based Distress Awareness System for Small Boat (딥러닝 기반 소형선박 승선자 조난 인지 시스템)

  • Chon, Haemyung;Noh, Jackyou
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.281-288
    • /
    • 2022
  • According to statistics conducted by the Korea Coast Guard, the number of accidents on small boats under 5 tons is increasing every year. This is because only a small number of people are on board. The previously developed maritime distress and safety systems are not well distributed because passengers must be equipped with additional remote equipment. The purpose of this study is to develop a distress awareness system that recognizes man over-board situations in real time. This study aims to present the part of the passenger tracking system among the small ship's distress awareness situational system that can generate passenger's location information in real time using deep learning based object detection and tracking technologies. The system consisted of the following steps. 1) the passenger location information is generated in the form of Bounding box using its detection model (YOLOv3). 2) Based on the Bounding box data, Deep SORT predicts the Bounding box's position in the next frame of the image with Kalman filter. 3) When the actual Bounding Box is created within the range predicted by Kalman-filter, Deep SORT repeats the process of recognizing it as the same object. 4) If the Bounding box deviates the ship's area or an error occurs in the number of tracking occupant, the system is decided the distress situation and issues an alert. This study is expected to complement the problems of existing technologies and ensure the safety of individuals aboard small boats.

Detection of an Object Bottoming at Seabed by the Reflected Signal Modeling (천해에서 해저면 반사파의 모델링을 통한 물체의 탐지)

  • On, Baeksan;Kim, Sunho;Moon, Woosik;Im, Sungbin;Seo, Iksu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.55-65
    • /
    • 2016
  • Detecting an object which is located at seabed is an important issue for various areas. This paper presents an approach to detection of an object that is placed at seabed in the shallow water. A conventional scheme is to employ a side-scan sonar to obtain images of a detection area and to use image processing schemes to recognize an object. Since this approach relies on high frequency signals to get clear images, its detection range becomes shorter and the processing time is getting longer. In this paper, we consider an active sonar system that is repeatedly sending a linear frequency modulated signal of 6~20 kHz in the shallow water of 100m depth. The proposed approach is to model consecutively received reflected signals and to measure their modeling error magnitudes which decide the existence of an object placed on seabed depending on relative magnitude with respect to threshold value. The feature of this approach is to only require an assumption that the seabed consists of an homogeneous sediment, and not to require a prior information on the specific properties of the sediment. We verify the proposed approach in terms of detection probability through computer simulation.

Segmentation of Pointed Objects for Service Robots (서비스 로봇을 위한 지시 물체 분할 방법)

  • Kim, Hyung-O;Kim, Soo-Hwan;Kim, Dong-Hwan;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • This paper describes how a person extracts a unknown object with pointing gesture while interacting with a robot. Using a stereo vision sensor, our proposed method consists of two stages: the detection of the operators' face, the estimation of the pointing direction, and the extraction of the pointed object. The operator's face is recognized by using the Haar-like features. And then we estimate the 3D pointing direction from the shoulder-to-hand line. Finally, we segment an unknown object from 3D point clouds in estimated region of interest. On the basis of this proposed method, we implemented an object registration system with our mobile robot and obtained reliable experimental results.

  • PDF

AR Tourism Service Framework Using YOLOv3 Object Detection (YOLOv3 객체 검출을 이용한 AR 관광 서비스 프레임워크)

  • Kim, In-Seon;Jeong, Chi-Seo;Jung, Kye-Dong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.195-200
    • /
    • 2021
  • With the development of transportation and mobiles demand for tourism travel is increasing and related industries are also developing significantly. The combination of augmented reality and tourism contents one of the areas of digital media technology, is also actively being studied, and artificial intelligence is already combined with the tourism industry in various directions, enriching tourists' travel experiences. In this paper, we propose a system that scans miniature models produced by reducing tourist areas, finds the relevant tourist sites based on models learned using deep learning in advance, and provides relevant information and 3D models as AR services. Because model learning and object detection are carried out using YOLOv3 neural networks, one of various deep learning neural networks, object detection can be performed at a fast rate to provide real-time service.

Deep Learning Algorithm Training and Performance Analysis for Corridor Monitoring (회랑 감시를 위한 딥러닝 알고리즘 학습 및 성능분석)

  • Woo-Jin Jung;Seok-Min Hong;Won-Hyuck Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.776-781
    • /
    • 2023
  • K-UAM will be commercialized through maturity after 2035. Since the Urban Air Mobility (UAM) corridor will be used vertically separating the existing helicopter corridor, the corridor usage is expected to increase. Therefore, a system for monitoring corridors is also needed. In recent years, object detection algorithms have developed significantly. Object detection algorithms are largely divided into one-stage model and two-stage model. In real-time detection, the two-stage model is not suitable for being too slow. One-stage models also had problems with accuracy, but they have improved performance through version upgrades. Among them, YOLO-V5 improved small image object detection performance through Mosaic. Therefore, YOLO-V5 is the most suitable algorithm for systems that require real-time monitoring of wide corridors. Therefore, this paper trains YOLO-V5 and analyzes whether it is ultimately suitable for corridor monitoring.K-uam will be commercialized through maturity after 2035.

Reference Image Update on the Security System for the Moving Object Detection (침입자 검출을 위한 보안 시스템에서의 참고영상 갱신 방안에 관한 연구)

  • 안용학
    • Convergence Security Journal
    • /
    • v.2 no.2
    • /
    • pp.99-108
    • /
    • 2002
  • In this paper, I propose a reference image updating algorithm for Intruder Detection System using a difference image method that can reliably separate moving objects from noisy background in the image sequence received from a camera at the fixed position. The proposed algorithm consists of four process determines threshold value and quantization, segmentation of a moving object area, generation of adaptive temporary image that removes a moving object area, and updates reference image using median filtering. The test results show that the proposed algorithm can generate reference image very effectively in the noisy environment.

  • PDF

AdaBoost-based Real-Time Face Detection & Tracking System (AdaBoost 기반의 실시간 고속 얼굴검출 및 추적시스템의 개발)

  • Kim, Jeong-Hyun;Kim, Jin-Young;Hong, Young-Jin;Kwon, Jang-Woo;Kang, Dong-Joong;Lho, Tae-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1074-1081
    • /
    • 2007
  • This paper presents a method for real-time face detection and tracking which combined Adaboost and Camshift algorithm. Adaboost algorithm is a method which selects an important feature called weak classifier among many possible image features by tuning weight of each feature from learning candidates. Even though excellent performance extracting the object, computing time of the algorithm is very high with window size of multi-scale to search image region. So direct application of the method is not easy for real-time tasks such as multi-task OS, robot, and mobile environment. But CAMshift method is an improvement of Mean-shift algorithm for the video streaming environment and track the interesting object at high speed based on hue value of the target region. The detection efficiency of the method is not good for environment of dynamic illumination. We propose a combined method of Adaboost and CAMshift to improve the computing speed with good face detection performance. The method was proved for real image sequences including single and more faces.