• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.032 seconds

The Development of Surface Inspection System Using the Real-time Image Processing (실시간 영상처리를 이용한 표면흠검사기 개발)

  • 이종학;박창현;정진양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.171-171
    • /
    • 2000
  • We have developed m innovative surface inspection system for automated quality control for steel products in POSCO. We had ever installed the various kinds of surface inspection systems, such as a linear CCD and a laser typed surface inspection systems at cold rolled strips production lines. But, these systems cannot fulfill the sufficient detection and classification rate, and real time processing performance. In order to increase detection and classification rate, we have used the Dark, Bright and Transition Field illumination and area type CCD camera, and fur the real time image processing, parallel computing has been used. In this paper, we introduced the automatic surface inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms and its performance obtained at the production line.

  • PDF

An Optimal Implementation of Object Tracking Algorithm for DaVinci Processor-based Smart Camera (다빈치 프로세서 기반 스마트 카메라에서의 객체 추적 알고리즘의 최적 구현)

  • Lee, Byung-Eun;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.17-22
    • /
    • 2009
  • DaVinci processors are popular media processors for implementing embedded multimedia applications. They support dual core architecture: ARM9 core for video I/O handling as well as system management and peripheral handling, and DSP C64+ core for effective digital signal processing. In this paper, we propose our efforts for optimal implementation of object tracking algorithm in DaVinci-based smart camera which is being designed and implemented by our laboratory. The smart camera in this paper is supposed to support object detection, object tracking, object classification and detection of intrusion into surveillance regions and sending the detection event to remote clients using IP protocol. Object tracking algorithm is computationally expensive since it needs to process several procedures such as foreground mask extraction, foreground mask correction, connected component labeling, blob region calculation, object prediction, and etc. which require large amount of computation times. Thus, if it is not implemented optimally in Davinci-based processors, one cannot expect real-time performance of the smart camera.

  • PDF

A Study on Motion Detection of Object Using Active Block Matching Algorithm (능동적 블록정합기법을 이용한 객체의 움직임 검출에 관한 연구)

  • Lee Chang-Soo;Park Mi-Og;Lee Kyung-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.407-416
    • /
    • 2006
  • It is difficult for the movement detection of an object through a camera to detect exact movement because of unnecessary noises and changes of the light. It can be recognized as a background, when there is no movement after the inflow of an object. Therefore, It is necessary to fast search algorithm for tracking and extract of object that is realtime image. In this thesis, we evaluate the difference of the input vision based on initial image and replace some pixels in process of time. When there is a big difference between background image and input image, we decide it is the point of the time of the object input and then extract boundary point of it. The extracted boundary point detects precise movement of the object by creating minimum block of it and searching block that maintaining distance. The designed and embodied system shows more than 95% accuracy in the performance test.

A Study on an Automatic Multi-Focus System for Cell Observation

  • Park, Jaeyoung;Lee, Sangjoon
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • This study is concerned with the mechanism and structure of an optical microscope and an automatic multi-focus algorithm for automatically selecting sharp images from multiple foci of a cell. To obtain precise cell images quickly, a z-axis actuator with a resolution of $0.1{\mu}m$ was designed to control an optical microscope Moreover, a lighting control system was constructed to select the color and brightness of light that best suit the object being viewed. Cell images are captured by the instrument and the sharpness of each image is determined using Gaussian and Laplacian filters. Next, cubic spline interpolation and peak detection algorithms are applied to automatically find the most vivid points among multiple images of a single object. A cancer cell imaging experiment using propidium iodide staining confirmed that a sharp multipoint image can be obtained using this microscope. The proposed system is expected to save time and effort required to extract suitable cell images and increase the convenience of cell analysis.

A Study on Object Detection using Restructured RetinaNet (재구조화된 RetinaNet을 활용한 객체 탐지에 관한 연구)

  • Kim, Jun Yeong;Jung, Se Hoon;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1531-1539
    • /
    • 2020
  • Searching for portable baggage through the system before boarding an airplane at an airport is important because it prevents many risks. In addition to these dangerous items, personal and confidential information leaks are occurring at airports through data storage devices. In the airport search system, there is a need for a system that searches not only dangerous items but also devices that can leak data. In this paper, we proposed a model that searches for a data storage device by improving the existing model. A comparative evaluation was conducted using existing algorithms. As a result, it was confirmed that the performance of the proposed model is 74 in the training data and 46.73 in the test data, which is superior to the existing model.

Efficient 3D Scene Labeling using Object Detectors & Location Prior Maps (물체 탐지기와 위치 사전 확률 지도를 이용한 효율적인 3차원 장면 레이블링)

  • Kim, Joo-Hee;Kim, In-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.996-1002
    • /
    • 2015
  • In this paper, we present an effective system for the 3D scene labeling of objects from RGB-D videos. Our system uses a Markov Random Field (MRF) over a voxel representation of the 3D scene. In order to estimate the correct label of each voxel, the probabilistic graphical model integrates both scores from sliding window-based object detectors and also from object location prior maps. Both the object detectors and the location prior maps are pre-trained from manually labeled RGB-D images. Additionally, the model integrates the scores from considering the geometric constraints between adjacent voxels in the label estimation. We show excellent experimental results for the RGB-D Scenes Dataset built by the University of Washington, in which each indoor scene contains tabletop objects.

Augmented Reality Service Based on Object Pose Prediction Using PnP Algorithm

  • Kim, In-Seon;Jung, Tae-Won;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.295-301
    • /
    • 2021
  • Digital media technology is gradually developing with the development of convergence quaternary industrial technology and mobile devices. The combination of deep learning and augmented reality can provide more convenient and lively services through the interaction of 3D virtual images with the real world. We combine deep learning-based pose prediction with augmented reality technology. We predict the eight vertices of the bounding box of the object in the image. Using the predicted eight vertices(x,y), eight vertices(x,y,z) of 3D mesh, and the intrinsic parameter of the smartphone camera, we compute the external parameters of the camera through the PnP algorithm. We calculate the distance to the object and the degree of rotation of the object using the external parameter and apply to AR content. Our method provides services in a web environment, making it highly accessible to users and easy to maintain the system. As we provide augmented reality services using consumers' smartphone cameras, we can apply them to various business fields.

Anomaly detection of isolating switch based on single shot multibox detector and improved frame differencing

  • Duan, Yuanfeng;Zhu, Qi;Zhang, Hongmei;Wei, Wei;Yun, Chung Bang
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.811-825
    • /
    • 2021
  • High-voltage isolating switches play a paramount role in ensuring the safety of power supply systems. However, their exposure to outdoor environmental conditions may cause serious physical defects, which may result in great risk to power supply systems and society. Image processing-based methods have been used for anomaly detection. However, their accuracy is affected by numerous uncertainties due to manually extracted features, which makes the anomaly detection of isolating switches still challenging. In this paper, a vision-based anomaly detection method for isolating switches, which uses the rotational angle of the switch system for more accurate and direct anomaly detection with the help of deep learning (DL) and image processing methods (Single Shot Multibox Detector (SSD), improved frame differencing method, and Hough transform), is proposed. The SSD is a deep learning method for object classification and localization. In addition, an improved frame differencing method is introduced for better feature extraction and a hough transform method is adopted for rotational angle calculation. A number of experiments are conducted for anomaly detection of single and multiple switches using video frames. The results of the experiments demonstrate that the SSD outperforms the You-Only-Look-Once network. The effectiveness and robustness of the proposed method have been proven under various conditions, such as different illumination and camera locations using 96 videos from the experiments.

Robust 3D visual tracking for moving object using pan/tilt stereo cameras (Pan/Tilt스테레오 카메라를 이용한 이동 물체의 강건한 시각추적)

  • Cho, Che-Seung;Chung, Byeong-Mook;Choi, In-Su;Nho, Sang-Hyun;Lim, Yoon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.77-84
    • /
    • 2005
  • In most vision applications, we are frequently confronted with determining the position of object continuously. Generally, intertwined processes ire needed for target tracking, composed with tracking and control process. Each of these processes can be studied independently. In case of actual implementation we must consider the interaction between them to achieve robust performance. In this paper, the robust real time visual tracking in complex background is considered. A common approach to increase robustness of a tracking system is to use known geometric models (CAD model etc.) or to attach the marker. In case an object has arbitrary shape or it is difficult to attach the marker to object, we present a method to track the target easily as we set up the color and shape for a part of object previously. Robust detection can be achieved by integrating voting-based visual cues. Kalman filter is used to estimate the motion of moving object in 3D space, and this algorithm is tested in a pan/tilt robot system. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

Development of a Real-Time Automatic Passenger Counting System using Head Detection Based on Deep Learning

  • Kim, Hyunduk;Sohn, Myoung-Kyu;Lee, Sang-Heon
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.428-442
    • /
    • 2022
  • A reliable automatic passenger counting (APC) system is a key point in transportation related to the efficient scheduling and management of transport routes. In this study, we introduce a lightweight head detection network using deep learning applicable to an embedded system. Currently, object detection algorithms using deep learning have been found to be successful. However, these algorithms essentially need a graphics processing unit (GPU) to make them performable in real-time. So, we modify a Tiny-YOLOv3 network using certain techniques to speed up the proposed network and to make it more accurate in a non-GPU environment. Finally, we introduce an APC system, which is performable in real-time on embedded systems, using the proposed head detection algorithm. We implement and test the proposed APC system on a Samsung ARTIK 710 board. The experimental results on three public head datasets reflect the detection accuracy and efficiency of the proposed head detection network against Tiny-YOLOv3. Moreover, to test the proposed APC system, we measured the accuracy and recognition speed by repeating 50 instances of entering and 50 instances of exiting. These experimental results showed 99% accuracy and a 0.041-second recognition speed despite the fact that only the CPU was used.