• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.028 seconds

Real-time passive millimeter wave image segmentation for concealed object detection (은닉 물체 검출을 위한 실시간 수동형 밀리미터파 영상 분할)

  • Lee, Dong-Su;Yeom, Seok-Won;Lee, Mun-Kyo;Jung, Sang-Won;Chang, Yu-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.181-187
    • /
    • 2012
  • Millimeter wave (MMW) readily penetrates fabrics, thus it can be used to detect objects concealed under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, because of the diffraction limit and low signal level, the imaging system often suffers from low image quality. Therefore, suitable statistical analysis and computational processing would be required for automatic analysis of the images. In this paper, a real-time concealed object detection is addressed by means of the multi-level segmentation. The histogram of the image is modeled with a Gaussian mixture distribution, and hidden object areas are segmented by a multi-level scheme involving $k$-means, the expectation-maximization algorithm, and a decision rule. The complete algorithm has been implemented in C++ environments on a standard computer for a real-time process. Experimental and simulation results confirm that the implemented system can achieve the real-time detection of concealed objects.

LSTM Network with Tracking Association for Multi-Object Tracking

  • Farhodov, Xurshedjon;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1236-1249
    • /
    • 2020
  • In a most recent object tracking research work, applying Convolutional Neural Network and Recurrent Neural Network-based strategies become relevant for resolving the noticeable challenges in it, like, occlusion, motion, object, and camera viewpoint variations, changing several targets, lighting variations. In this paper, the LSTM Network-based Tracking association method has proposed where the technique capable of real-time multi-object tracking by creating one of the useful LSTM networks that associated with tracking, which supports the long term tracking along with solving challenges. The LSTM network is a different neural network defined in Keras as a sequence of layers, where the Sequential classes would be a container for these layers. This purposing network structure builds with the integration of tracking association on Keras neural-network library. The tracking process has been associated with the LSTM Network feature learning output and obtained outstanding real-time detection and tracking performance. In this work, the main focus was learning trackable objects locations, appearance, and motion details, then predicting the feature location of objects on boxes according to their initial position. The performance of the joint object tracking system has shown that the LSTM network is more powerful and capable of working on a real-time multi-object tracking process.

ASM Algorithm Applid to Image Object spFACS Study on Face Recognition (영상객체 spFACS ASM 알고리즘을 적용한 얼굴인식에 관한 연구)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.1-12
    • /
    • 2016
  • Digital imaging technology has developed into a state-of-the-art IT convergence, composite industry beyond the limits of the multimedia industry, especially in the field of smart object recognition, face - Application developed various techniques have been actively studied in conjunction with the phone. Recently, face recognition technology through the object recognition technology and evolved into intelligent video detection recognition technology, image recognition technology object detection recognition process applies to skills through is applied to the IP camera, the image object recognition technology with face recognition and active research have. In this paper, we first propose the necessary technical elements of the human factor technology trends and look at the human object recognition based spFACS (Smile Progress Facial Action Coding System) for detecting smiles study plan of the image recognition technology recognizes objects. Study scheme 1). ASM algorithm. By suggesting ways to effectively evaluate psychological research skills through the image object 2). By applying the result via the face recognition object to the tooth area it is detected in accordance with the recognized facial expression recognition of a person demonstrated the effect of extracting the feature points.

A Real-time Indoor Place Recognition System Using Image Features Detection (영상 특징 검출 기반의 실시간 실내 장소 인식 시스템)

  • Song, Bok-Deuk;Shin, Bum-Joo;Yang, Hwang-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.76-83
    • /
    • 2012
  • In a real-time indoor place recognition system using image features detection, specific markers included in input image should be detected exactly and quickly. However because the same markers in image are shown up differently depending to movement, direction and angle of camera, it is required a method to solve such problems. This paper proposes a technique to extract the features of object without regard to change of the object scale. To support real-time operation, it adopts SURF(Speeded up Robust Features) which enables fast feature detection. Another feature of this system is the user mark designation which makes possible for user to designate marks from input image for location detection in advance. Unlike to use hardware marks, the feature above has an advantage that the designated marks can be used without any manipulation to recognize location in input image.

Moving object Tracking Algorithm Based on Specific Color Detection (특정컬러정보 검출기반의 이동객체 탐색 알고리듬 구현)

  • Kim, Young-Bin;Ryu, Kwang-Ryol;Sclabassi, Robert J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.277-280
    • /
    • 2007
  • A moving object tracking algorithm for image searching based on specific color detection is proposed in this paper. That is preprocessed for a luminance variation and noise cancellation to be robust system. The motion tracking is used the difference between input image and reference image in R, G, B each channels for a moving image. The proposed method is enhanced to 15% fast in comparison with the contour tracking method and the matching method, and stable.

  • PDF

Animal Tracking in Infrared Video based on Adaptive GMOF and Kalman Filter

  • Pham, Van Khien;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.78-87
    • /
    • 2016
  • The major problems of recent object tracking methods are related to the inefficient detection of moving objects due to occlusions, noisy background and inconsistent body motion. This paper presents a robust method for the detection and tracking of a moving in infrared animal videos. The tracking system is based on adaptive optical flow generation, Gaussian mixture and Kalman filtering. The adaptive Gaussian model of optical flow (GMOF) is used to extract foreground and noises are removed based on the object motion. Kalman filter enables the prediction of the object position in the presence of partial occlusions, and changes the size of the animal detected automatically along the image sequence. The presented method is evaluated in various environments of unstable background because of winds, and illuminations changes. The results show that our approach is more robust to background noises and performs better than previous methods.

A Sweet Persimmon Grading Algorithm using Object Detection Techniques and Machine Learning Libraries (객체 탐지 기법과 기계학습 라이브러리를 활용한 단감 등급 선별 알고리즘)

  • Roh, SeungHee;Kang, EunYoung;Park, DongGyu;Kang, Young-Min
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.769-782
    • /
    • 2022
  • A study on agricultural automation became more important. In Korea, sweet persimmon farmers spend a lot of time and effort on classifying profitable persimmons. In this paper, we propose and implement an efficient grading algorithm for persimmons before shipment. We gathered more than 1,750 images of persimmons, and the images were graded and labeled for classifications purpose. Our main algorithm is based on EfficientDet object detection model but we implemented more exquisite method for better classification performance. In order to improve the precision of classification, we adopted a machine learning algorithm, which was proposed by PyCaret machine learning workflow generation library. Finally we acquired an improved classification model with the accuracy score of 81%.

Object Detection Algorithm Using Edge Information on the Sea Environment (해양 환경에서 에지 정보를 이용한 물표 추출 알고리즘)

  • Jeong, Jong-Myeon;Park, Gyei-Kark
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.69-76
    • /
    • 2011
  • According to the related reports, about 60 percents of ship collisions have resulted from operating mistake caused by human factor. Specially, the report said that negligence of observation caused 66.8 percents of the accidents due to a human factor. Hence automatic detection and tracking of an object from an IR images are crucial for safety navigation because it can relieve officer's burden and remedies imperfections of human visual system. In this paper, we present a method to detect an object such as ship, rock and buoy from a sea IR image. Most edge directions of the sea image are horizontal and most vertical edges come out from the object areas. The presented method uses them as a characteristic for the object detection. Vertical edges are extracted from the input image and isolated edges are eliminated. Then morphological closing operation is performed on the vertical edges. This caused vertical edges that actually compose an object be connected and become an object candidate region. Next, reference object regions are extracted using horizontal edges, which appear on the boundaries between surface of the sea and the objects. Finally, object regions are acquired by sequentially integrating reference region and object candidate regions.

Study on object detection and distance measurement functions with Kinect for windows version 2 (키넥트(Kinect) 윈도우 V2를 통한 사물감지 및 거리측정 기능에 관한 연구)

  • Niyonsaba, Eric;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1237-1242
    • /
    • 2017
  • Computer vision is coming more interesting with new imaging sensors' new capabilities which enable it to understand more its surrounding environment by imitating human vision system with artificial intelligence techniques. In this paper, we made experiments with Kinect camera, a new depth sensor for object detection and distance measurement functions, most essential functions in computer vision such as for unmanned or manned vehicles, robots, drones, etc. Therefore, Kinect camera is used here to estimate the position or the location of objects in its field of view and measure the distance from them to its depth sensor in an accuracy way by checking whether that the detected object is real object or not to reduce processing time ignoring pixels which are not part of real object. Tests showed promising results with such low-cost range sensor, Kinect camera which can be used for object detection and distance measurement which are fundamental functions in computer vision applications for further processing.

Novel velocity detection of moving object with rough surface vertically illuminated by self-mixing laser diode

  • Shibata, Takaaki;Shinohara, Shigenobu;Ikeda, Hiroaki;Yoshida, Hirofumi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.494-497
    • /
    • 1994
  • We propose a novel velocity detection method of moving object based on a speckle pattern on the target surface using a self-mixing laser diode (SMLD). By this measurement, it was confirmed that the speckle signal has its waveform independent of the target velocity, and has its averaged frequency directly proportional to the target velocity. So it will be possible to detect the velocity of the target transversely translating against the laser light beam using a compact measuring system.

  • PDF