• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.035 seconds

Ensemble Deep Network for Dense Vehicle Detection in Large Image

  • Yu, Jae-Hyoung;Han, Youngjoon;Kim, JongKuk;Hahn, Hernsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • This paper has proposed an algorithm that detecting for dense small vehicle in large image efficiently. It is consisted of two Ensemble Deep-Learning Network algorithms based on Coarse to Fine method. The system can detect vehicle exactly on selected sub image. In the Coarse step, it can make Voting Space using the result of various Deep-Learning Network individually. To select sub-region, it makes Voting Map by to combine each Voting Space. In the Fine step, the sub-region selected in the Coarse step is transferred to final Deep-Learning Network. The sub-region can be defined by using dynamic windows. In this paper, pre-defined mapping table has used to define dynamic windows for perspective road image. Identity judgment of vehicle moving on each sub-region is determined by closest center point of bottom of the detected vehicle's box information. And it is tracked by vehicle's box information on the continuous images. The proposed algorithm has evaluated for performance of detection and cost in real time using day and night images captured by CCTV on the road.

Upward, Downward Stair Detection Method by using Obliq ue Distance (사거리를 이용한 상향, 하향 계단 검출 방법)

  • Gu, Bongen;Lee, Haeun;Kwon, Hyeokmin;Yoo, Jihyeon;Lee, Daho;Kim, Taehoon
    • Journal of Platform Technology
    • /
    • v.10 no.2
    • /
    • pp.10-19
    • /
    • 2022
  • Moving assistant devices for people who are difficult to move are becoming electric-powered and automated. These moving assistant devices are not suitable for moving stairs at which the height between floor surfaces is different because these devices are designed and manufactured for flatland moving. An electric-powered and automated moving assistant device should change direction or stop when it approaches stairs in a movement direction. If the user or automatic control system does not change direction or stop in time, a moving assistant device can roll over or collide with stairs. In this paper, we propose a stairs detection method by using oblique distance measured by one sensor tilted to flatland. The method proposed in this paper can detect upward or downward stairs by using a difference between a predicted and measured oblique distance in considering a tilted angle of a sensor for measuring an oblique distance and installation height of the sensor on a moving object. Before the device enters a stairs region, if our proposed method provides information about detected stairs to a device's controller, the controller can do adequate action to avoid the accident.

Analysis of performance changes based on the characteristics of input image data in the deep learning-based algal detection model (딥러닝 기반 조류 탐지 모형의 입력 이미지 자료 특성에 따른 성능 변화 분석)

  • Juneoh Kim;Jiwon Baek;Jongrack Kim;Jungsu Park
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.267-273
    • /
    • 2023
  • Algae are an important component of the ecosystem. However, the excessive growth of cyanobacteria has various harmful effects on river environments, and diatoms affect the management of water supply processes. Algal monitoring is essential for sustainable and efficient algae management. In this study, an object detection model was developed that detects and classifies images of four types of harmful cyanobacteria used for the criteria of the algae alert system, and one diatom, Synedra sp.. You Only Look Once(YOLO) v8, the latest version of the YOLO model, was used for the development of the model. The mean average precision (mAP) of the base model was analyzed as 64.4. Five models were created to increase the diversity of the input images used for model training by performing rotation, magnification, and reduction of original images. Changes in model performance were compared according to the composition of the input images. As a result of the analysis, the model that applied rotation, magnification, and reduction showed the best performance with mAP 86.5. The mAP of the model that only used image rotation, combined rotation and magnification, and combined image rotation and reduction were analyzed as 85.3, 82.3, and 83.8, respectively.

A study on the improvement of artificial intelligence-based Parking control system to prevent vehicle access with fake license plates (위조번호판 부착 차량 출입 방지를 위한 인공지능 기반의 주차관제시스템 개선 방안)

  • Jang, Sungmin;Iee, Jeongwoo;Park, Jonghyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.57-74
    • /
    • 2022
  • Recently, artificial intelligence parking control systems have increased the recognition rate of vehicle license plates using deep learning, but there is a problem that they cannot determine vehicles with fake license plates. Despite these security problems, several institutions have been using the existing system so far. For example, in an experiment using a counterfeit license plate, there are cases of successful entry into major government agencies. This paper proposes an improved system over the existing artificial intelligence parking control system to prevent vehicles with such fake license plates from entering. The proposed method is to use the degree of matching of the front feature points of the vehicle as a passing criterion using the ORB algorithm that extracts information on feature points characterized by an image, just as the existing system uses the matching of vehicle license plates as a passing criterion. In addition, a procedure for checking whether a vehicle exists inside was included in the proposed system to prevent the entry of the same type of vehicle with a fake license plate. As a result of the experiment, it showed the improved performance in identifying vehicles with fake license plates compared to the existing system. These results confirmed that the methods proposed in this paper could be applied to the existing parking control system while taking the flow of the original artificial intelligence parking control system to prevent vehicles with fake license plates from entering.

Magnetic Flux Leakage based Damage Quantification of Steel Bar (누설자속기법을 이용한 강봉의 손상 정량화 기법)

  • Park, Jooyoung;Kim, Ju-Won;Yu, Byoungjoon;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • In this paper, a magnetic flux leakage(MFL) based steel bar damage detection was first researched to quantify the signals from damages on the wire rope. Though many researches inspecting damages using a MFL method was proceeded until the present, the researches are at the level that diagnose whether damages are or not. This has limitation to take measures in accordance with the damage level. Thus, a MFL inspection system was modeled using a finite element analysis(FEM) program dealing with electromagnetism problems, and a steel bar specimen was adopted as a ferromagnetic object. Then, an experimental study was also carried out to verify the simulation results with a steel bar which has same damage conditions as the simulation. The MFL signals was nearly not affected by the increase of the inspection velocity, and the magnitudes of the signals are not identical according to the change of the defect width even the defects have same depth. On the basis of the analysis, the signal properties from the damages were extracted to classify the type of damages, and it could be confirmed that classification of damages using extracted signal properties is feasible.

Application of Terrestrial LiDAR for Displacement Detecting on Risk Slope (위험 경사면의 변위 검출을 위한 지상 라이다의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.323-328
    • /
    • 2019
  • In order to construct 3D geospatial information about the terrain, current measurement using a total station, remote sensing, GNSS(Global Navigation Satellite System) have been used. However, ground survey and GNSS survey have time and economic disadvantages because they have to be surveyed directly in the field. In case of using aerial photographs and satellite images, these methods have the disadvantage that it is difficult to obtain the three-dimensional shape of the terrain. The terrestrial LiDAR can acquire 3D information of X, Y, Z coordinate and shape obtained by scanning innumerable laser pulses at densely spaced intervals on the surface of the object to be observed at high density, and the processing can also be automated. In this study, terrestrial LiDAR was used to analyze slope displacement. Study area slopes were selected and data were acquired using LiDAR in 2016 and 2017. Data processing has been used to generate slope cross section and slope data, and the overlay analysis of the generated data identifies slope displacements within 0.1 m and suggests the possibility of using slope LiDAR on land to manage slopes. If periodic data acquisition and analysis is performed in the future, the method using the terrestrial lidar will contribute to effective risk slope management.

Development of a Metamodel-Based Healthcare Service System using OSGi Component Platform (OSGi 컴포넌트 플랫폼을 이용한 메타모델 기반의 건강관리 서비스 시스템 개발)

  • Kim, Tae-Woong;Kim, Hee-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.121-132
    • /
    • 2011
  • A healthcare system is a type of medical information system that performs early detection and prevention in diseases by checking one's health condition periodically. Such a healthcare system is based on the signal obtained from the body. However, the developed existing system represents certain differences in the storage and description of vital signs according to medicare devices and the evaluation method of the system. It brings some disadvantages, such as lacks in the interoperability between systems, increases in the development cost of systems, and absence of a unified system. Thus, this study develops a healthcare system based on a meta model. For establishing this objective, this study describes and stores vital sign data based on the standard meta model of HL7 and applies OCL, which is a mathematical specification language, for defining wellness indexes and extracting data in order to evaluate health risk appraisals in health. In addition, this study implements components based on OSGi and assemble them in order to easily extend various devices and systems. By describing vital data based on the meta model, it represents some advantages that it makes possible to ensure the interoperability between systems and introduce the standardization of the evaluation method of health conditions through defining the wellness index using OCL. Also, it provides dear specifications.

Image Processing System based on Deep Learning for Safety of Heat Treatment Equipment (열처리 장비의 Safety를 위한 딥러닝 기반 영상처리 시스템)

  • Lee, Jeong-Hoon;Lee, Ro-Woon;Hong, Seung-Taek;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.77-83
    • /
    • 2020
  • The heat treatment facility is in a situation where the scope of application of the remote IOT system is expanding due to the harsh environment caused by high heat and long working hours among the root industries. In this heat treatment process environment, the IOT middleware is required to play a pivotal role in interpreting, managing and controlling data information of IoT devices (sensors, etc.). Until now, the system controlled by the heat treatment remotely was operated with the command of the operator's batch system without overall monitoring of the site situation. However, for the safety and precise control of the heat treatment facility, it is necessary to control various sensors and recognize the surrounding work environment. As a solution to this, the heat treatment safety support system presented in this paper proposes a support system that can detect the access of the work manpower to the heat treatment furnace through thermal image detection and operate safely when ordering work from a remote location. In addition, an OPEN CV-based deterioration analysis system using DNN deep learning network was constructed for faster and more accurate recognition than general fixed hot spot monitoring-based thermal image analysis. Through this, we would like to propose a system that can be used universally in the heat treatment environment and support the safety management specialized in the heat treatment industry.

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

Fast Heuristic Algorithm for Similarity of Trajectories Using Discrete Fréchet Distance Measure (이산 프레셰 거리 척도를 이용한 궤적 유사도 고속계산 휴리스틱 알고리즘)

  • Park, Jinkwan;Kim, Taeyong;Park, Bokuk;Cho, Hwan-Gue
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.4
    • /
    • pp.189-194
    • /
    • 2016
  • A trajectory is the motion path of a moving object. The advances in IT have made it possible to collect an immeasurable amount of various type of trajectory data from a moving object using location detection devices like GPS. The trajectories of moving objects are widely used in many different fields of research, including the geographic information system (GIS) field. In the GIS field, several attempts have been made to automatically generate digital maps of roads by using the vehicle trajectory data. To achieve this goal, the method to cluster the trajectories on the same road is needed. Usually, the $Fr{\acute{e}}chet$ distance measure is used to calculate the distance between a pair of trajectories. However, the $Fr{\acute{e}}chet$ distance measure requires prolonged calculation time for a large amount of trajectories. In this paper, we presented a fast heuristic algorithm to distinguish whether the trajectories are in close distance or not using the discrete $Fr{\acute{e}}chet$ distance measure. This algorithm trades the accuracy of the resulting distance with decreased calculation time. By experiments, we showed that the algorithm could distinguish between the trajectory within 10 meters and the distant trajectory with 95% accuracy and, at worst, 65% of calculation reduction, as compared with the discrete $Fr{\acute{e}}chet$ distance.