• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.036 seconds

A Study on the Optimization of C++ Program Using the Class Hierarchies Slicing (클래스 계층구조 슬라이싱을 이용한 C++프로그램 최적화에 관한 연구)

  • Kim, Un-Yong;Jeong, Gye-Dong;Choe, Yeong-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1542-1555
    • /
    • 1999
  • This paper proposes an algorithm for class hierarchies which can optimize member data and member function. This algorithm considers single/multiple inheritance, static/dynamic binding, overloading/overriding, pure virtual/virtual function, and constructor on the hierarchy of C++ class. We need to eliminate unused function that possesses many component element, because the program uses a limited of function in class hierarchies. Previous works on slicing mainly focused on selecting output data and including the related program statement. It was consists of structured programming language and also centralized on error detection, maintenance, and flexible testing. In this paper, we extend to the object-oriented language, makes a linked-table for objects to raise the efficiency of information management, and proposes necessary algorithm for optimizing system Through this process, we can obtain the simplification of program code and the progress of system performance by eliminating unused member data and member function.

  • PDF

A Vehicle Detection Algorithm for a Lane Change (차선 변경을 위한 차량 탐색 알고리즘)

  • Ji, Eui-Kyung;Han, Min-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.98-105
    • /
    • 2007
  • In this paper, we propose the method and system which determines the condition for safe and unsafe lane changing. To determine the condition, first, the system sets up the Region of Interest(ROI) on the neighboring lane. Second, a dangerous vehicle is extracted during the line changing. Third, the condition is determined to wm or not by calculating the moving direction, relative distance md relative velocity. To set up the ROI, the only one side lane is detected and the interested region is expanded. Using the coordinate transformation method, the accuracy of the ROI raised. To correctly extract the vehicle on the neighboring lane, the Adaptive Background Update method and Image Segmentation method which uses the feature of the travelling road are used. The object which is extracted by the dangerous vehicle is calculated the relative distance, the relative velocity and the moving average. And then in order to ring, the direction of the vehicle and the condition for safe and unsafe is determined. As minimizes the interested region and uses the feature of the travelling road, the computational quantity is reduced and the accuracy is raised and a stable result on a travelling road images which demands a high speed calculation is showed.

  • PDF

Detection of Abnormal Behavior by Scene Analysis in Surveillance Video (감시 영상에서의 장면 분석을 통한 이상행위 검출)

  • Bae, Gun-Tae;Uh, Young-Jung;Kwak, Soo-Yeong;Byun, Hye-Ran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.744-752
    • /
    • 2011
  • In intelligent surveillance system, various methods for detecting abnormal behavior were proposed recently. However, most researches are not robust enough to be utilized for actual reality which often has occlusions because of assumption the researches have that individual objects can be tracked. This paper presents a novel method to detect abnormal behavior by analysing major motion of the scene for complex environment in which object tracking cannot work. First, we generate Visual Word and Visual Document from motion information extracted from input video and process them through LDA(Latent Dirichlet Allocation) algorithm which is one of document analysis technique to obtain major motion information(location, magnitude, direction, distribution) of the scene. Using acquired information, we compare similarity between motion appeared in input video and analysed major motion in order to detect motions which does not match to major motions as abnormal behavior.

A Study on Vehicle License Plate Recognition System through Fake License Plate Generator in YOLOv5 (YOLOv5에서 가상 번호판 생성을 통한 차량 번호판 인식 시스템에 관한 연구)

  • Ha, Sang-Hyun;Jeong, Seok Chan;Jeon, Young-Joon;Jang, Mun-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.699-706
    • /
    • 2021
  • Existing license plate recognition system is used as an optical character recognition method, but a method of using deep learning has been proposed in recent studies because it has problems with image quality and Korean misrecognition. This requires a lot of data collection, but the collection of license plates is not easy to collect due to the problem of the Personal Information Protection Act, and labeling work to designate the location of individual license plates is required, but it also requires a lot of time. Therefore, in this paper, to solve this problem, five types of license plates were created using a virtual Korean license plate generation program according to the notice of the Ministry of Land, Infrastructure and Transport. And the generated license plate is synthesized in the license plate part of collectable vehicle images to construct 10,147 learning data to be used in deep learning. The learning data classifies license plates, Korean, and numbers into individual classes and learn using YOLOv5. Since the proposed method recognizes letters and numbers individually, if the font does not change, it can be recognized even if the license plate standard changes or the number of characters increases. As a result of the experiment, an accuracy of 96.82% was obtained, and it can be applied not only to the learned license plate but also to new types of license plates such as new license plates and eco-friendly license plates.

Present and Prospect of Ocean Observation Using Pressure-recording Inverted Echo Sounder (PIES) (압력측정 전도음향측심기(PIES)를 활용한 해양관측의 현재와 전망)

  • CHANHYUNG JEON;KANG-NYEONG LEE;HAJIN SONG;JEONG-YEOB CHAE;JAE-HUN PARK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.51-61
    • /
    • 2023
  • Sound can travel a long distance in the ocean; hence, acoustic instruments have been widely used for ocean observations in various fields such as bathymetric survey, object detection, underwater communication, and current measurements. Herein we introduce a pressure-recording inverted echo sounder (PIES) which is one of the most powerful instruments, moored at seafloor for ocean observation in physical oceanography. The PIES can measure various kinds of oceanic phenomena (currents, mesoscale eddies, internal waves, and sea surface height variabilities) and support acoustic telemetry and pop-up data shuttle (PDS) system for remote data acquisition. In this paper, we review uses of PIES and describe present and prospective system of PIES including remote data acquisition toward (quasi) real-time data recovery.

Road Image Recognition Technology based on Deep Learning Using TIDL NPU in SoC Enviroment (SoC 환경에서 TIDL NPU를 활용한 딥러닝 기반 도로 영상 인식 기술)

  • Yunseon Shin;Juhyun Seo;Minyoung Lee;Injung Kim
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.25-31
    • /
    • 2022
  • Deep learning-based image processing is essential for autonomous vehicles. To process road images in real-time in a System-on-Chip (SoC) environment, we need to execute deep learning models on a NPU (Neural Procesing Units) specialized for deep learning operations. In this study, we imported seven open-source image processing deep learning models, that were developed on GPU servers, to Texas Instrument Deep Learning (TIDL) NPU environment. We confirmed that the models imported in this study operate normally in the SoC virtual environment through performance evaluation and visualization. This paper introduces the problems that occurred during the migration process due to the limitations of NPU environment and how to solve them, and thereby, presents a reference case worth referring to for developers and researchers who want to port deep learning models to SoC environments.

Estimation of two-dimensional position of soybean crop for developing weeding robot (제초로봇 개발을 위한 2차원 콩 작물 위치 자동검출)

  • SooHyun Cho;ChungYeol Lee;HeeJong Jeong;SeungWoo Kang;DaeHyun Lee
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.15-23
    • /
    • 2023
  • In this study, two-dimensional location of crops for auto weeding was detected using deep learning. To construct a dataset for soybean detection, an image-capturing system was developed using a mono camera and single-board computer and the system was mounted on a weeding robot to collect soybean images. A dataset was constructed by extracting RoI (region of interest) from the raw image and each sample was labeled with soybean and the background for classification learning. The deep learning model consisted of four convolutional layers and was trained with a weakly supervised learning method that can provide object localization only using image-level labeling. Localization of the soybean area can be visualized via CAM and the two-dimensional position of the soybean was estimated by clustering the pixels associated with the soybean area and transforming the pixel coordinates to world coordinates. The actual position, which is determined manually as pixel coordinates in the image was evaluated and performances were 6.6(X-axis), 5.1(Y-axis) and 1.2(X-axis), 2.2(Y-axis) for MSE and RMSE about world coordinates, respectively. From the results, we confirmed that the center position of the soybean area derived through deep learning was sufficient for use in automatic weeding systems.

Modified Center Weight Filter Algorithm using Pixel Segmentation of Local Area in AWGN Environments (AWGN 환경에서 국부영역의 화소분할을 사용한 변형된 중심 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.250-252
    • /
    • 2022
  • Recently, with the development of IoT technology and AI, unmanned and automated systems are progressing in various fields, and various application technologies are being studied in systems using algorithms such as object detection, recognition, and tracking. In the case of a system operating based on an image, noise removal is performed as a pre-processing process, and precise noise removal is sometimes required depending on the environment of the system. In this paper, we propose a modified central weight filter algorithm using pixel division of local regions to minimize the blurring that tends to occur in the filtering process and to emphasize the details of the resulting image. In the proposed algorithm, when a pixel of a local area is divided into two areas, the center of the dominant area among the divided areas is set as a criterion for the weight filter algorithm. The resulting image is calculated by convolving the transformed center weight with the pixel value inside the filtering mask.

  • PDF

The Obstacle Size Prediction Method Based on YOLO and IR Sensor for Avoiding Obstacle Collision of Small UAVs (소형 UAV의 장애물 충돌 회피를 위한 YOLO 및 IR 센서 기반 장애물 크기 예측 방법)

  • Uicheon Lee;Jongwon Lee;Euijin Choi;Seonah Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.16-26
    • /
    • 2023
  • With the growing demand for unmanned aerial vehicles (UAVs), various collision avoidance methods have been proposed, mainly using LiDAR and stereo cameras. However, it is difficult to apply these sensors to small UAVs due to heavy weight or lack of space. The recently proposed methods use a combination of object recognition models and distance sensors, but they lack information on the obstacle size. This disadvantage makes distance determination and obstacle coordination complicated in an early-stage collision avoidance. We propose a method for estimating obstacle sizes using a monocular camera-YOLO and infrared sensor. Our experimental results confirmed that the accuracy was 86.39% within the distance of 40 cm. In addition, the proposed method was applied to a small UAV to confirm whether it was possible to avoid obstacle collisions.

Construction of Faster R-CNN Deep Learning Model for Surface Damage Detection of Blade Systems (블레이드의 표면 결함 검출을 위한 Faster R-CNN 딥러닝 모델 구축)

  • Jang, Jiwon;An, Hyojoon;Lee, Jong-Han;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.80-86
    • /
    • 2019
  • As computer performance improves, research using deep learning are being actively carried out in various fields. Recently, deep learning technology has been applying to the safety evaluation for structures. In particular, the internal blades of a turbine structure requires experienced experts and considerable time to detect surface damages because of the difficulty of separation of the blades from the structure and the dark environmental condition. This study proposes a Faster R-CNN deep learning model that can detect surface damages on the internal blades, which is one of the primary elements of the turbine structure. The deep learning model was trained using image data with dent and punch damages. The image data was also expanded using image filtering and image data generator techniques. As a result, the deep learning model showed 96.1% accuracy, 95.3% recall, and 96% precision. The value of the recall means that the proposed deep learning model could not detect the blade damages for 4.7%. The performance of the proposed damage detection system can be further improved by collecting and extending damage images in various environments, and finally it can be applicable for turbine engine maintenance.