• Title/Summary/Keyword: object clustering

Search Result 272, Processing Time 0.023 seconds

Images Grouping Technology based on Camera Sensors for Efficient Stitching of Multiple Images (다수의 영상간 효율적인 스티칭을 위한 카메라 센서 정보 기반 영상 그룹핑 기술)

  • Im, Jiheon;Lee, Euisang;Kim, Hoejung;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • Since the panoramic image can overcome the limitation of the viewing angle of the camera and have a wide field of view, it has been studied effectively in the fields of computer vision and stereo camera. In order to generate a panoramic image, stitching images taken by a plurality of general cameras instead of using a wide-angle camera, which is distorted, is widely used because it can reduce image distortion. The image stitching technique creates descriptors of feature points extracted from multiple images, compares the similarities of feature points, and links them together into one image. Each feature point has several hundreds of dimensions of information, and data processing time increases as more images are stitched. In particular, when a panorama is generated on the basis of an image photographed by a plurality of unspecified cameras with respect to an object, the extraction processing time of the overlapping feature points for similar images becomes longer. In this paper, we propose a preprocessing process to efficiently process stitching based on an image obtained from a number of unspecified cameras for one object or environment. In this way, the data processing time can be reduced by pre-grouping images based on camera sensor information and reducing the number of images to be stitched at one time. Later, stitching is done hierarchically to create one large panorama. Through the grouping preprocessing proposed in this paper, we confirmed that the stitching time for a large number of images is greatly reduced by experimental results.

Fast Scene Change Detection Using Macro Block Information and Spatio-temporal Histogram (매크로 블록 정보와 시공간 히스토그램을 이용한 빠른 장면전환검출)

  • Jin, Ju-Kyong;Cho, Ju-Hee;Jeong, Jae-Hyup;Jeong, Dong-Suk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.141-148
    • /
    • 2011
  • Most of the previous works on scene change detection algorithm focus on the detection of abrupt rather than gradual changes. In general, gradual scene change detection algorithms require heavy computation. Some of those approaches don't consider the error factors such as flashlights, camera or object movements, and special effects. Many scenes change detection algorithms based on the histogram show better performances than other approaches, but they have computation load problem. In this paper, we proposed a scene change detection algorithm with fast and accurate performance using the vertical and horizontal blocked slice images and their macro block informations. We apply graph cut partitioning algorithm for clustering and partitioning of video sequence using generated spatio-temporal histogram. When making spatio-temporal histogram, we only use the central block on vertical and horizontal direction for performance improvement. To detect camera and object movement as well as various special effects accurately, we utilize the motion vector and type information of the macro block.

Influence of Self-driving Data Set Partition on Detection Performance Using YOLOv4 Network (YOLOv4 네트워크를 이용한 자동운전 데이터 분할이 검출성능에 미치는 영향)

  • Wang, Xufei;Chen, Le;Li, Qiutan;Son, Jinku;Ding, Xilong;Song, Jeongyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.157-165
    • /
    • 2020
  • Aiming at the development of neural network and self-driving data set, it is also an idea to improve the performance of network model to detect moving objects by dividing the data set. In Darknet network framework, the YOLOv4 (You Only Look Once v4) network model was used to train and test Udacity data set. According to 7 proportions of the Udacity data set, it was divided into three subsets including training set, validation set and test set. K-means++ algorithm was used to conduct dimensional clustering of object boxes in 7 groups. By adjusting the super parameters of YOLOv4 network for training, Optimal model parameters for 7 groups were obtained respectively. These model parameters were used to detect and compare 7 test sets respectively. The experimental results showed that YOLOv4 can effectively detect the large, medium and small moving objects represented by Truck, Car and Pedestrian in the Udacity data set. When the ratio of training set, validation set and test set is 7:1.5:1.5, the optimal model parameters of the YOLOv4 have highest detection performance. The values show mAP50 reaching 80.89%, mAP75 reaching 47.08%, and the detection speed reaching 10.56 FPS.

Improving the Performance of Deep-Learning-Based Ground-Penetrating Radar Cavity Detection Model using Data Augmentation and Ensemble Techniques (데이터 증강 및 앙상블 기법을 이용한 딥러닝 기반 GPR 공동 탐지 모델 성능 향상 연구)

  • Yonguk Choi;Sangjin Seo;Hangilro Jang;Daeung Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.211-228
    • /
    • 2023
  • Ground-penetrating radar (GPR) surveys are commonly used to monitor embankments, which is a nondestructive geophysical method. The results of GPR surveys can be complex, depending on the situation, and data processing and interpretation are subject to expert experiences, potentially resulting in false detection. Additionally, this process is time-intensive. Consequently, various studies have been undertaken to detect cavities in GPR survey data using deep learning methods. Deep-learning-based approaches require abundant data for training, but GPR field survey data are often scarce due to cost and other factors constaining field studies. Therefore, in this study, a deep- learning-based model was developed for embankment GPR survey cavity detection using data augmentation strategies. A dataset was constructed by collecting survey data over several years from the same embankment. A you look only once (YOLO) model, commonly used in computer vision for object detection, was employed for this purpose. By comparing and analyzing various strategies, the optimal data augmentation approach was determined. After initial model development, a stepwise process was employed, including box clustering, transfer learning, self-ensemble, and model ensemble techniques, to enhance the final model performance. The model performance was evaluated, with the results demonstrating its effectiveness in detecting cavities in embankment GPR survey data.

Direct Divergence Approximation between Probability Distributions and Its Applications in Machine Learning

  • Sugiyama, Masashi;Liu, Song;du Plessis, Marthinus Christoffel;Yamanaka, Masao;Yamada, Makoto;Suzuki, Taiji;Kanamori, Takafumi
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.99-111
    • /
    • 2013
  • Approximating a divergence between two probability distributions from their samples is a fundamental challenge in statistics, information theory, and machine learning. A divergence approximator can be used for various purposes, such as two-sample homogeneity testing, change-point detection, and class-balance estimation. Furthermore, an approximator of a divergence between the joint distribution and the product of marginals can be used for independence testing, which has a wide range of applications, including feature selection and extraction, clustering, object matching, independent component analysis, and causal direction estimation. In this paper, we review recent advances in divergence approximation. Our emphasis is that directly approximating the divergence without estimating probability distributions is more sensible than a naive two-step approach of first estimating probability distributions and then approximating the divergence. Furthermore, despite the overwhelming popularity of the Kullback-Leibler divergence as a divergence measure, we argue that alternatives such as the Pearson divergence, the relative Pearson divergence, and the $L^2$-distance are more useful in practice because of their computationally efficient approximability, high numerical stability, and superior robustness against outliers.

DNA chip Analysis of Psoriatic Skin during the Oriental Remedy (DNA chip을 이용한 건선의 한방치료에 관한 유전체 연구)

  • Kim Byoung Soo;Lee Sang Keun;Kim Hyun Woong;Lee Jeung Hoon;Lim Jong Soon;Kang Jung Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.468-473
    • /
    • 2004
  • Psoriasis is a chronic inflammatory disease of the skin characterized by epidermal hyperplasia, dermal angiogenesis, infiltration of activated T cells, and increased cytokine levels, and affects 1-3% of the world-wide population. Although many immunological and clinical reports indicate a role for the immune system in the pathogenesis of psoriasis, puzzling questions about psoriasis remain unsolved. During the several decade, immunosuppressor and PUVA treatment are ubiquitously used to psoriasis therapy. But recently, to promote terminal differentiation of keratinocytes, block either NK-Tcell or T-cell activation, and interrupting the angiogenic switch represent another therapeutic opportunity in psoriasis. To keep face with immunological therapy, the needs of newly designed prescription on the psoriasis treatments were demanded. With the object of understand the psoriasis from an orient medical point of view, patients were administrated the GY during several weeks. We investigated the changes of gene expression in involved and uninvolved skin samples during the oriental remedy. Microarray data showed several important results. First, Gene expression profiling is similar to each patient. Second, precursor proteins that organize cornified envelops are decreased at the end of remedy. But genes which related to apoptosis, G-protein signalling, and lipid metabolism are increased. Third, 68.5% of clustering genes localized on the psoriasis susceptibility locus. In our results indicated that GY influence on the keratinocytes hyperproliferation by regulating the gene, which located on the psoriasis susceptibility locus.

3D building modeling from airborne Lidar data by building model regularization (건물모델 정규화를 적용한 항공라이다의 3차원 건물 모델링)

  • Lee, Jeong Ho;Ga, Chill Ol;Kim, Yong Il;Lee, Byung Gil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.353-362
    • /
    • 2012
  • 3D building modeling from airborne Lidar without model regularization may cause positional errors or topological inconsistency in building models. Regularization of 3D building models, on the other hand, restricts the types of models which can be reconstructed. To resolve these issues, this paper modelled 3D buildings from airborne Lidar by building model regularization which considers more various types of buildings. Building points are first segmented into roof planes by clustering in feature space and segmentation in object space. Then, 3D building models are reconstructed by consecutive adjustment of planes, lines, and points to satisfy parallelism, symmetry, and consistency between model components. The experimental results demonstrated that the method could make more various types of 3d building models with regularity. The effects of regularization on the positional accuracies of models were also analyzed quantitatively.

Line Drawings from 2D Images (이차원 영상의 라인 드로잉)

  • Son, Min-Jung;Lee, Seung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.12
    • /
    • pp.665-682
    • /
    • 2007
  • Line drawing is a widely used style in non-photorealistic rendering because it generates expressive descriptions of object shapes with a set of strokes. Although various techniques for line drawing of 3D objects have been developed, line drawing of 2D images has attracted little attention despite interesting applications, such as image stylization. This paper presents a robust and effective technique for generating line drawings from 2D images. The algorithm consists of three parts; filtering, linking, and stylization. In the filtering process, it constructs a likelihood function that estimates possible positions of lines in an image. In the linking process, line strokes are extracted from the likelihood function using clustering and graph search algorithms. In the stylization process, it generates various kinds of line drawings by applying curve fitting and texture mapping to the extracted line strokes. Experimental results demonstrate that the proposed technique can be applied to the various kinds of line drawings from 2D images with detail control.

A Motion Correspondence Algorithm based on Point Series Similarity (점 계열 유사도에 기반한 모션 대응 알고리즘)

  • Eom, Ki-Yeol;Jung, Jae-Young;Kim, Moon-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.305-310
    • /
    • 2010
  • In this paper, we propose a heuristic algorithm for motion correspondence based on a point series similarity. A point series is a sequence of points which are sorted in the ascending order of their x-coordinate values. The proposed algorithm clusters the points of a previous frame based on their local adjacency. For each group, we construct several potential point series by permuting the points in it, each of which is compared to the point series of the following frame in order to match the set of points through their similarity based on a proximity constraint. The longest common subsequence between two point series is used as global information to resolve the local ambiguity. Experimental results show an accuracy of more than 90% on two image sequences from the PETS 2009 and the CAVIAR data sets.

Backlight Compensation by Using a Novel Region of Interest Extraction Method (새로운 관심영역 추출 방법을 이용한 역광보정)

  • Seong, Joon Mo;Lee, Seong Shin;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.321-328
    • /
    • 2017
  • We have implemented a technique to correct the brightness, saturation, and contrast of an image according to the degree of light, and further compensate the backlight. Backlight compensation can be done automatically or manually. For manual backlight compensation, we have to select the region of interest (ROI). ROI can be selected by connecting the outline of the desired object. We make users select the region delicately with the new magnetic lasso tool. The previous lasso tool has a disadvantage that the start point and the end point must be connected. However, the proposed lasso tool has the advantage of selecting the region of interest without connecting the start point and the end point. We can automatically obtain various results of backlight compensation by adjusting the number of k-means clusters for texture extraction and the threshold value for binarization.