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Abstract In this paper, we propose a heuristic algorithm for motion correspondence based on a
point series similarity. A point series is a sequence of points which are sorted in the ascending order
of their x—coordinate values. The proposed algorithm clusters the points of a previous frame based on
their local adjacency. For each group, we construct several potential point series by permuting the
points in it, each of which is compared to the point series of the following frame in order to match
the set of points through their similarity based on a proximity constraint. The longest common
subsequence between two point series is used as global information to resolve the local ambiguity.
Experimental results show an accuracy of more than 909 on two image sequences from the PETS
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2009 and the CAVIAR data sets.
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1. Introduction

Establishing motion correspondence is an impor—
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motion correspondence, object tracking, series similarity, trajectory, clustering,

tant research topic in computer vision applications,
such as motion analysis, object tracking and sur-
veillance [1,2). In motion correspondence, the goal
is to track points that are moving in a sequence of
frames. It is a challenging problem, especially in
situations where the number of points in each
frame is different due to various reasons. Local
methods are efficient but have difficulty determi-
ning locally ambiguous regions with densely moving
point sets. In order to resolve these ambiguities,
global methods use additional information provided
from the point sets, such as geometrical relation-
ships [3] or a global motion model [4]. In the
global motion model, the motion smoothness con-
straint is imposed not only on individual points, but

also on the complete set of points [4].



306 AR A =ER AL ES ]

Sethi and Jain [5] propose an iterative algorithm
to find the trajectories of points and solve the
correspondence problem through correspondence con-
sidered multiple frames. Rangarajan and Shah [6]
proposed a proximal uniformity constraint, using a
gradient based optical flow for establishing the
initial correspondence without using an iterative
optimization procedure. Veenman et al. [4] present a
framework for motion modeling and the greedy
optimal assignment (GOA) tracker which is efficient
in handling detection errors and occlusion. Shafique
and Shah [7] present a bipartite graph theoretical
formulation of the point correspondences over mul-
tiple frames and a sliding window technique to
reduce the time complexity of the overall algorithm.

In this paper, we propose a new global method
using the order of precedence among points with
respect to the x coordinates. Our proposed algorithm
tries not only to match the points maximally in
locally ambiguous regions, but also to maintain the
order of the matched points. The degree of order
maintenance in the matched points is measured by
the length of the longest common subsequence
(LCSS) used for the evaluation of similarity bet-
ween the time series [89]. This measurement
method is based on the Fast Time Series Eva-
luation (FTSE) which can be used to evaluate such
threshold value techniques, including the LCSS and
the Edit Distance on Real Sequence (EDR) [8].

The rest of this paper is organized as follows:
Section 2 provides the definition and the notion for
the Point Series. We then present a technique that
groups points into P-regions, in which two or more
points are potentially interchangeable in Section 3.
Section 4 describes a method that determines all of
the possible arrangements in the P-region. Section
5 presents the point correspondence method in the
P-regions, and the performance of our algorithm is
evaluated in Section 6. Lastly, our conclusions are

remarked upon in Section 7.

2. The Point Series

We define point series S as an ordered sequence
of points, where the order of a point is determined
by sorting the points in an ascending order of the

x—coordinate value of each point. The order of a

2 38 A 37 A A 4 520104

point in a point series is regarded as the time
index of a sample in a time series.

8: <8,85,0,8, >, 18i<d, 5;x<5,,.x 1)

where si.x is the x—coordinate of the im point six
Consider a point series with m points constructed
from a frame. Owing to object motion, some adja-
cent points of the sgries may interchange their orders
in the point series found in the consecutive frame.
Considering the maximum velocity constraint, we
cluster the points in a point series into several small
groups. Each group represents a set of points which
can switch their precedence order in the following
frame. For each group, we construct a potential point
series, i.e. the candidates of the point series possibly
appearing in the following frame. Each series is
compared with the real point series, which is the

constructed point series of the following frame.

3. Grouping the Points

For each point of a (t-1)w frame, we construct a
bounding box centered at the point with a side
length of 2¢ in the x and y directions, where € is a
predefined maximum velocity of a point between
two consecutive frames. If the adjacent bounding
boxes overlap, then the center points of their boxes
may swap their orders in the next point series. We
call the union of these connected bounding boxes
the P-region. All the points in a P-region become
a group used to construct a potential point series.

To construct the P-regions efficiently, the follow-
ing three steps are performed. First, all the points of
a group are projected onto the x axis and clustered
into several groups. If two consecutive points are
within the distance of 2e in the x- direction, they
belong to the same group. Second, a group with two
or more points is split into smaller groups if the
y-directional distance between the adjacent points
exceeds 2¢. The above process is performed for the y
axis in a similar fashion. Finally, a group is split into
different groups so that each group consists of a set
of points whose bounding boxes overlap each other.
Each group in this step is a set of points belonging
to the same P-region.

An example of this is shown in Fig. 1. First, a

set of points, {D,2.3,,0,6,®,®}, from the (t-1)m
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time frame is split into two different groups, {D,®,
®) and {®®,8,@,®)} since the x-directional distance
between @ and @ is larger than 2¢. Second, the
group {O,@,Q)} is split into {D} and (@,3)} because
of the y-directional distance between @ and @.
Similarly, the group {®.8,8,@®,®} is split into {@,
®,0,®} and {®} because of the y-directional dis—
tance between ©® and ®. Finally, the group {@,®,
@,8} is split into {®O,@} and {®} since their
bounding boxes are not connected. The connected

bounding boxes for each group represent a P-region.

X

Fig. 1 An example of the P-region corresponding
process

4. Assigning Points to the P-regions

Let us assign each point of the next frame to
P-regions generated at the grouping stage accor—
ding to the (x, y) coordinates of the point. As
shown in Fig. 1, the situations in the P-regions are
categorized as the following three types. The p and
q in p:q denote the numbers of points from two
adjacent frames at times t -1 and t, respectively, in
a P-region

Type 1: p:0 This situation occurs when the p
points at time t-1 were not detected in the next
frame due to a detection miss or a scene-out. Rl
in Fig. 1 is an example of this case. Tracking of
these points should be terminated.

Type 2: 0: q This is a situation in where q new
points were detected in a frame at time t because
of a false detection or a scene-in. R6 with point ®
in Fig. 1 is an example of this case. Tracking of
these points should be initiated.

Type 3: piq This is a composite case in that the

situations of Types ! and 2 occur simultaneously.

The remaining P-regions in Fig. 1 are examples of
this. In this case, we construct a set of potential
point series by permuting the p points of the t-1
frame in the P-region. If a potential point series
has a pair of points which cannot be switched due
to their excessive distance, the series is ignored.
For the points from a previous frame in a
P-region, G=(V1, V3, .., Vp}, a set of the potential
point series, V, is constructed. Each series consists

of p points.
V=V, =<3, A1k < P, |V, I= P} )

where 1Si<j<pv,v, €G v #v,vix—vx<2%

A real point series, R, ie. the point series of the
tn frame, with q points in the same P-region is
constructed as:

R= < et ...,rj,...,rq > 3)

where 1Si<Jj<gq, n#r, rnx<r.x

The set of the potential point series constructed
from the group of points {@,®,@} located in the
R2 region in Fig. 1 consists of three point series:
{<®0,0>, <@0®,>, <®d®>}. The remaining
series, <®0,@®>, <D,®,6>, <DB,®@>, are dis-
carded because the distance between @ and @
exceeds the bounds of 2¢. The real point series for

the R2 region becomes <©,@,®,®>

5. Corresponding Two Point Series

Each potential point series, Vi, is recursively
compared with a real point series, R, to find the
LCSS based on the proximity constraints. Two
points in each series are regarded as matched, ie.
the same in the LCSS problem, if their Euclidean
distance is within the bound of & The LCSS gives
us the maximum pairs of matching points

B ={(v',,r')|1<ig], v eV, reR, |V, 1 |<e}

along with their length l.. The Vi>”'i are the im
matching points between the potential point series
and the real point series, respectively. Next, we
find out the potential point series, Vmax, that have a
maximum length Lm.x among the entire potential
point series.

Lo = mva;x{l,‘ of LCSS(V,, R)} @

The maximum pairs of the matching points of
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Vmax are denoted as Pmax. If several potential point
series exist with the same maximum length Lmax,
we select from them the Vg which Px maximizes
with the heuristic function found in (5). Eq. (5) is
developed to measure the average motion smooth-

ness of the matching pairs.

Wi nl min{| pv', |, [V, 7' [}
I, =1max{] J A" [vr' 1}

f&)=

Wy min{ang (pV',), ang (v',r')}

l',t i=1 max{ ang (piv|i)’ ang (v'i r'i)} ©)

where pi is a point in the (t-2)u frame correspon-

ding with point v',., and ang(pqg) denotes an

—

angle between P49 and the x axis. The first and

the second term measure the average speed
smoothness and the direction smoothness, respec—
tively. wi, w2 are the corresponding weights. For
Pmax, (5) computes and checks whether the value is
greater than the threshold Th for an acceptable
motion change.

Finally, if the value of the function is greater
than Th, the matched points in Pmax are regarded
as corresponding. Otherwise, (5) is computed re-
peatedly with an updated Pmax as a subset of the
current Pmax by excluding the pair with the maxi-

mum motion change until the condition is satisfied.

6. The Experimental Results

We performed our experiments on two image
sequences. The first dataset, named “Crowd of four
people meet, walk and split”, is from the CAVIAR
project web site (provided with ground truth) [10].
It contains various conditions, such as the scene-in
and scene-out of 4 persons, and their.crossing of
each other. The second dataset, from Pets2009,
includes many occlusions due to the number of
human beings in the image sequence [11]. In this,
the ground truth is manually obtained by pointing
at the center of each moving person for all of the
frames. Also, we made several artificial datasets by
adding random noises to represent falsely detected
objects to each image sequence at the rate of 10~
50% to simulate detection errors. Sample images of
the two original datasets are shown in Fig. 2.

To evaluate the performance, the ratic of the

(a) Caviar dataset (b) Pets dataset
(488 frames) (50 frames)
Fig. 2 The two datasets

correctly corresponding pairs (CCPR), the ratio of
the correctly detected tracks (CDTR), and the
average ID change (AIDC) [12] are measured. The
CCPR is the ratio of the number of correctly est-
ablished correspondences to the total number of

true correspondences for all frames.

M N

53 cc,

_ et =
CCPR = e ®)

where CCj; is 1 if the correspondence between the
points of the i-1 frame and the points of the i frame
for the j track is correct. TC is the total number of
true correspondences, N is the total number of
frames, and M is the total number of tracks.

The CDTR
correctly detected tracks to the total number of

is the ratio of the number of

true tracks in the image sequence, as shown in (7)
and (8). A track is regarded as a correctly detected
track if it satisfies the condition that the CDTR for
each track is larger than the predefined threshold
(Th) which in our experiments is set to 90%. This
measure is used to get the ratio of the valid track
to the total track.

M
CDIR =N'1, /M
; ’ )

0, otherwise ®

where TC; is the total number of true correspond-
ences for the j track.

The Average of ID Change (AIDC) is the ratio
of the number of ID changes to the total number of
true correspondences for all tracks. This means that

the IDs for all the correspondences are changed as
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Table 1 The Experimental Results for the Caviar
and Pets datasets
Caviar dataset Pets dataset
Noises | 0% | 25% | 50% | 0% 10% | 20% | 30%
CCPR | 100% | 96% | 95% | 96% | 95% | 93% | 91%
CDTR | 100% | 100% | 100% | 100% | 96% | 91% | 89%
AIDC | 0% |01% | 0.1% | 1% | 2.2% | 2.3% | 2.5%
(a) the true trajectories
(b) the calculated trajectories
Fig. 3 The CAVIAR dataset
much as the AIDC on average.
A
AIDC = Z IDC, /(M *(N -1)) ©
=

where IDC; is the total number of the ID changes
for the j track.

We let function parameters wi/lk =05, wo/lx=1
and €=10.

The results are shown in Table 1. Fig. 3 shows
the true trajectories of the ground truth (GT) and
the calculated trajectories of the ST for the
CAVIAR dataset without noise. Fig. 4 shows the

(a) the true trajectories

(b) the calculated trajectories
Fig. 4 The PETS dataset

true trajectories of the GT and the calculated tra-
jectories of the ST for the PETS dataset without
noise. The four trajectories seen in Fig. 3(a) and
Fig. 3(b) for the CAVIAR dataset without noises
are the same, but the trajectories seen in Fig. 4 for
the PETS dataset without noises show a difference.
The thick circles in Fig. 4(b) show the regions
where the ids are changed and the point corres-—

pondences between the points are incorrect,

7. Conclusion

We proposed a motion correspondence algorithm
which uses global information based on the prece-
dence order of points in the x-coordinates. Accord-
ing to the maximum velocity constraint of a point,
we divide the overall points into several groups in
which the points may swap their orders. Two point
series extracted from consecutive frames are eva-
luated to locate the LCSS in order to acquire the
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maximum matching pairs. If there are two or more
LCSSs with the same length, we select the one
that satisfies the motion smoothness constraint. We
tested several data sets with random noises added
at the rate of 0~50%. The experimental results
show that the proposed algorithm is efficient and
robust for finding motion correspondences even
when high level noises are added.
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