• Title/Summary/Keyword: oak coppice forest

Search Result 3, Processing Time 0.02 seconds

Study on the Management System of Oak Coppice Forest on Forest Fire Site (산불피해지 참나무 맹아림 시업체계에 관한 연구)

  • Lim, Joo-hoon;Ji, Dong-hun;Lee, Young-geun;Lee, Myung-bo
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.652-658
    • /
    • 2009
  • This study was conducted to investigate the growing characteristics of oak sprouts which have developed naturally after fire and to suggest proper management system which is adapted for oak coppice forest by controlling the number of sprouts. We examined 3 burned sites and 9 unburned pine stands in Kangwondo. In the early years sprouts of oak coppice forest grew very slowly after fire compare to common oak coppice forest. But they had over than 10 cm of DBH after 15years, their DBH reached 10 cm and entered the stage of regeneration period. We also examined the effect of sprouts control. In the case of Quercus mongolica, stumps with 1 or 3 sprouts grew 1.3 m faster than the ones in the control stand. For Q. variabilis, stumps with 2 sprouts grew 0.9 m faster. In conclusion small timber production is proper for the oak coppice forest stand which is developed on the forest fire site and pruning or fertilizing is needed to shorten the production cycle.

Analysis of the Final Cutting Ages in Quercus variabilis Coppice Forests (굴참나무 맹아갱신지의 벌기령 추정)

  • Park, Joon Hyung;Chung, Sang Hoon;Kim, Sun Hee;Kim, Hyungho;Lee, Sang Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.468-476
    • /
    • 2020
  • we developed a stand density management diagram for Quercus variabilis in order to predict the final cutting ages of coppice forests based on management objectives. The sample data were classified into two groups: 603 data points for analysis and 113 data points for verification. Using these data, a stand density management diagram was constructed and a goodness-of-fit test was performed. The explanatory power (R2) of the constituent models for the stand density management diagram was 0.732 for the equivalent height curve and 0.990 for the equivalent diameter curve. According to the analysis of the final cutting age rangeof the highest production, the final cutting ages for 900 buds remaining per hectare was 42-44 years, and that for the 1,800 buds remaining per hectare was 38-42 years. With the third-grade log set as the production target, the final cutting age range with site index 16 and 14 was 25-28 years and 29-33 years, respectively. The results of this study provide baseline data for establishing a management plan for Q. variabilis coppice stands.

A Study on Forestation for Landscaping around the Lakes in the Upper Watersheds of North Han River (북한강상류수계(北漢江上流水系)의 호수단지주변삼림(湖水団地周辺森林)의 풍경적시업(風景的施業)에 관(関)한 연구(硏究))

  • Ho, Ul Yeong
    • Journal of Korean Society of Forest Science
    • /
    • v.54 no.1
    • /
    • pp.1-24
    • /
    • 1981
  • Kangweon-Do is rich in sightseeing resources. There are three sightseeing areas;first, mountain area including Seolak and Ohdae National Parks, and chiak Provincial Park; second eastern coastal area; third lake area including the watersheds of North Han River. In this paper, several methods of forestation were studied for landscaping the North Han River watersheds centering around Chounchon. In Chunchon lake complex, there are four lakes; Uiam, Chunchon, Soyang and Paro from down to upper stream. The total surface area of the above four lakes is $14.4km^2$ the total pondage of them 4,155 million $m^3$, the total generation of electric power of them 410 thousand Kw, and the total forest area bordering on them $1,208km^2$. The bordering forest consists of planned management forest ($745km^2$) and non-planned management forest ($463km^2$). The latter is divided into green belt zone, natural conservation area, and protection forest. The forest in green belt amounts to $177km^2$ and centers around the 10km radios from Chunchon. The forest in natural conservation area amounts to $165km^2$, which is established within 2km sight range from the Soyang-lake sides. Protection forest surrounding the lakes is $121km^2$ There are many scenic places, recreation gardens, cultural goods and ruins in this lake complex, which are the same good tourist resources as lakes and forest. The forest encirelng the lakes has the poor average growing stock of $15m^3/ha$, because 70% of the forest consists of the young plantation of 1 to 2 age class. The ration of the needle-leaved forest, the broad-leaved forest and the mixed forest in 35:37:28. From the standpoint of ownership, the forest consists of national forest (36%), provincial forest (14%), Gun forest (5%) and private forest(45%). The greater part of the forest soil, originated from granite and gneiss, is much liable to weathering. Because the surface soil is mostly sterile, the fertilization for improving the soil quality is strongly urged. Considering the above-mentioned, the forestation methods for improving landscape of the North Han River Watersheds are suggested as follows: 1) The mature-stage forest should be induced by means of fertilizing and tendering, as the forest in this area is the young plantation with poor soil. 2) The bare land should be afforested by planting the rapid growing species, such as rigida pine, alder, and etc. 3) The bare land in the canyon with moderate moist and comparatively rich soil should be planted with Korean-pine, larch, ro fir. 4) Japaness-pine stand should be changed into Korean-pine, fir, spruce or hemlock stand from ravine to top gradually, because the Japanese-pine has poor capacity of water conservation and great liability to pine gall midge. 5) Present hard-wood forest, consisting of miscellaneous trees comparatively less valuable from the point of wood quality and scenerity, should be change into oak, maple, fraxinus-rhynchophylla, birch or juglan stand which is comparatively more valuable. 6) In the mountain foot within the sight-range, stands should be established with such species as cherry, weeping willow, white poplar, machilus, maiden-hair tree, juniper, chestnut or apricot. 7) The regeneration of some broad-leaved forests should be induced to the middle forest type, leading to the harmonious arrangement of the two storied forest and the coppice. 8) For the preservation of scenery, the reproduction of the soft-wood forest should be done under the selection method or the shelter-wood system. 9) Mixed forest should be regenerated under the middle forest system with upper needle-leaved forest and lower broad-leaved forest. In brief, the nature's mysteriousness should be conserved by combining the womanly elegance of the lakes and the manly grandeur of the forest.

  • PDF