• Title/Summary/Keyword: nylon-6

Search Result 507, Processing Time 0.024 seconds

Effect of Nylon/Aramid Filaments Characteristics on the Physical Property of Air Textured Yarns for Protective Garment (Nylon/아라미드 원사특성이 방호의류용 에어텍스쳐사의 물성에 미치는 영향)

  • Kim, Hyun-Ah
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.75-82
    • /
    • 2014
  • This study investigated the physical properties of aramid/nylon ATY and aramid ATY for protective garments according to the aramid and nylon characteristics fed on the core and effect components of air jet texturing equipment. Tenacity decrease of aramid ATY was much more higher than that of nylon ATY because of slick of aramid filament surface. Tenacity of aramid/nylon ATY was most affected by the tenacity of nylon on the effect component of ATY. Breaking strain of nylon ATY was two times higher than that of nylon before air jet texturing, then, in case of aramid ATY and aramid/nylon ATY, were 5.9-6.7 times higher than those before air jet texturing. Initial modulus decrease of aramid ATY showed 86.5% of initial modulus of aramid before air jet texturing, then aramid/nylon hibrid ATY showed arithmetic average value of initial modulus of aramid and nylon ATY. Wet and dry thermal shrinkages of aramid/nylon hybrid ATY were dominated by those of nylon filament on the effect component of ATY.

Effects of the Glass Fiber Synthetic Rate on the Characteristics of Fatigue Failure for Nylon 6 (나일론 6의 유리 섬유 합성률이 피로 파괴 특성에 미치는 영향)

  • 허윤경;태순호;김용수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.121-130
    • /
    • 1998
  • In recent years, a number of metal machine parts, in the field of the car manufactures and electronic goods for home, have been replaced by nylon-6 in order to weight, cost, and a period of process of manufacture. It's because nylon-6 materials as an industrial material have higher economical and productive advantage than the metalic ones. However, in domestic injection manufactures, there are few data on fiber glass synthetic on nylon-6. It is said that plastic in process of manufacture using the same injection materials make their results different in large scale according to fiber glass synthetic rate conditions. In this study, we have studied effects of the glass fiber synthetic rate on the characteristics of fatigue failure for nylon-6.

  • PDF

Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(II) - Effect of Process Variables on The Mechanical Properties of Composites - (난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(II) - 공정변수가 복합재의 기계적 성질에 미치는 영향 -)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.58-65
    • /
    • 1997
  • This research was carried out to evaluate the effect of process variables on mechanical properties of the wood fiber-thermoplastic fiber composites by turbulent air mixing method. The turbulent air mixer used in this experiment was specially designed in order to mix wood fiber and thermoplastic polypropylene or nylon 6 fiber, and was highly efficient in the mixing of relatively short plastic fiber and wood fiber in a short time without any trouble. The adequate hot - pressing temperature and time in our experimental condition were $190^{\circ}C$ and 9 minutes in 90% wood fiber - 10% polypropylene fiber composite and $220^{\circ}C$ and 9 minutes in 90% wood fiber 10% nylon 6 fiber composite. Both in the wood fiber - polypropylene fiber composite and wood fiber- nylon 6 fiber composite, the mechanical properties improved with the increase of density. Statistically, the density of composite appeared to function as the most significant factor in mechanical properties. Within the 5~15% composition ratios of polypropylene or nylon 6 fiber to wood fiber, the composition ratio showed no significant effect on the mechanical properties. Bending and tensile strength of composite, however, slightly increased with the increase of synthetic fiber content. The increase of mat moisture content showed no significant improvement of mechanical properties both in wood fiber - polypropylene fiber composite and wood fiber nylon 6 fiber composite. Wood fiber - nylon 6 fiber composite was superior in th mechanical strength to wood fiber-polypropylene fiber composite, which may be related to higher melt flow index of nylon 6 fiber(22g/10min) than of polypropylene fiber(4.3g/10min).

  • PDF

Nylon 6 잠재권축사의 구조와 물성

  • Park, Myeong-Su
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.49-49
    • /
    • 2011
  • 최근 나일론 세섬 신축소재를 이용한 초경량 직물은 에 많이 사용되어지는 Nylon직물은 DTY 20~40d 소재를 이용한 rib조직과 이중조직 설계기술 및 염색가공기술에 의한 것으로 이들 제품은 조직의 한계점(이중조직, Rib), 신축특성의 저하, 품질 저하의 문제점이 대두되고 있어 아직까지 본격적으로는 상용화되지 못하고 있는 실정이다. 국내외적으로는 Polyester를 이용한 잠재권축 사는 일정수준으로 기술개발 진행 되어왔으나 아직까지 나일론 세섬사의 잠재권축 소재의 기술개발은 전무한 실정이다. 따라서 본 연구에서는 스포츠/레저용 초경량 Nylon 박지에 적합한 자발신장 개념인 Nylon6 잠재권축 소재를 개발하기 위하여 26D수준의 side by side형인 nylon6/Co-Nylon의 구조와 물성을 조사 검토하여 이를 실제 현장에 자료를 제공하는 것을 목적으로 하였다.

  • PDF

Flame Retardant Finishing for Nylon Fabric with Phosphate Compound (인 화합물에 의한 나일론 직물의 방염가공)

  • 김수창
    • Textile Coloration and Finishing
    • /
    • v.10 no.4
    • /
    • pp.30-36
    • /
    • 1998
  • The need for the effective flame retardant finishing for synthetic fiber Is required. This paper is focussed on the analysis of physical properties of nylon 6 fabric treated with tris(2-chloroethyl) phosphate(TCEP) in comparision with the untreated fabric. In order to evaluate the flame retardance effect, limiting oxygen index and burn rate were determined. Above 20% add-on of TCEP on nylon 6 fabric, reasonable flame retardancy was observed. Thermal stability of the treated nylon 6 fabric was evaluated by TGA. It seems that TCEP acts via a condensed phase mechanism. Tenacity and moisture regain of the treated fabrics were not changed and washfastness of those was excellent.

  • PDF

N6/NCD 복합방사 소재개발 및 제품개발에 관한 연구

  • Sim, Seung-Beom;Seo, Mal-Yong;Choe, Gwang-Seok;Son, Hyeon-Sik
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.11a
    • /
    • pp.145-146
    • /
    • 2009
  • This is studies about development of light nylon fabric and development of low denier NCD/nylon6 filament using mixed spinning technique of nylon6 and NCD(Nylon Cation Dyeable) polymer. We study how the manufactured fabrics effect on downproof & windproof properties according to conditions of low denier N/NCD filament yarn, fabrication, and dyeing and finishing.

  • PDF

Strength Tests of Imported NYLON 6 and its Variation after Dying (수입 NYLON망사의 장력시험과 염색후의 변화)

  • Ko, Kwan-Soh;Kim, Beung-Tae;Kang, Kun-Hi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.6 no.1
    • /
    • pp.14-22
    • /
    • 1970
  • To investigate some properties of imported netting twines, the breaking strength, elongation and shrinkage were measured. Most of the yarns of palyamide (nylan 6), as raw material, used for netting twines are imported from Japan, however, their properties by maker's are not well known in Korea. The properties of these imported twines were ompared with Korean made netting twines and the effects of dying were also tested according to temperature. After all, nylon 6 of Unitika was the strongest and followed by those of Toray, Teijin, Kalan respectialy in wet and dry condition. The shrinkage was 3.07-5.0 % after dying in imported netting twines, while Kalan was 8. 84 % .

  • PDF

Preparation of Nylon Elastomer and Its Application in the Electrospinning Process (나이론탄성체 제조와 전기방사응용)

  • Park, Jun-Seo;Ketpang, Kriangsak
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • Nylon 6 and nylon elastomer were prepared by anionic polymerization route. Nylon elastomers, composed of hard segment of polyamide(PA) and soft segment of polyether(PE), were synthesized by use of TDI terminated polyol with caprolactam. The morphology of the electrospun webs of nylon and nylon elastomers, observed by FE-SEM, showed that the porous electrospun web was composed of nanofibers, whose diameter were in the range of 100 to 180 nm. Their behavior of melting and crystallization and the chemical structure of nylon elastomers were investigated by DSC and ATR FT-IR. Result of tensile testing indicated that nylon has higher tensile strength and lower elongation than nylon elastomers. Atmospheric plasma(APP) with $O_2$ and $N_2$ as reactive gas modified the surface of electrospun nylon and electrospun nylon elastomers allowing them higher hydrophilicity, while APP with $CH_4$ as reactive gas modified the surface of polymers allowing higher hydrophobicity.

Mechanical Properties of Carbon Fiber/Nylon 6 Composite Introducing Coupling Agent (II) -Increasing Interfacial Strength of Composite- (카플링제를 도입한 탄소섬유/나일론 6 복합재료의 기계적 성질(II) -복합재료의 계면강도 증가-)

  • Park, Chan Hun;Lee, Yang Hun;Shin, Eun Joo
    • Textile Coloration and Finishing
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 1997
  • To improve the interfacial bonding of carbon fiber-nylon 6 composite, carbon fiber(CF) were oxidized by nitric acid treatment, and two types of graft polymer(GP) of nylon 6-g-polyacrylamide (PAAm) -water dispersable GP(WDGP) and m-cresol solu ble GP(CSGP) were treated as coupling agents. Introduction of polar groups such as -COOH, -OH, etc, on the surface of the oxidized CF was confirmed by IR spectra. The stem polymer of nylon 6 in the coupling agent (GP) could be compatible with'matrix nylon 5, and the grafted branch of PAAm on GP could react to the polar groups on the oxidized CF in composite. The interfacial strength was measured by the transverse tensile test to the fiber direction for single CF embedded nylon 6 film especially prepared and by the pull-out test method. The interfacial strength of the composite reinforced with oxidized CF is greater than that reinforced with unoxidized CF. The interfacial strength of the composite was increased by treatment of coupling agents(GPs) considerably, and the increasing tendency by the WDGP is greater than that by the CSGP. The optimum conditions of coupling agent treatment are as follows: the concentration, adsorption tlme of GP, and curing temperature are 2%, 20 minutes, and $170^{\circ}$, respectively.

  • PDF

Effects of Fiber Surface-Treatment and Sizing on the Dynamic Mechanical and Interfacial Properties of Carbon/Nylon 6 Composites

  • Cho, Dong-Hwan;Yun, Suk-Hyang;Kim, Jun-Kyung;Lim, Soon-Ho;Park, Min;Lee, Geon-Woong;Lee, Sang-Soo
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan ${\delta}$ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.

  • PDF