Preparation of Nylon Elastomer and Its Application in the Electrospinning Process

나이론탄성체 제조와 전기방사응용

  • Park, Jun-Seo (Department of Chemical Engineering and Center of Chemical Technology Hankyong National University) ;
  • Ketpang, Kriangsak (Department of Chemical Engineering and Center of Chemical Technology Hankyong National University)
  • 박준서 (한경대학교 화학공학부, 화학연구소) ;
  • Published : 2009.09.30

Abstract

Nylon 6 and nylon elastomer were prepared by anionic polymerization route. Nylon elastomers, composed of hard segment of polyamide(PA) and soft segment of polyether(PE), were synthesized by use of TDI terminated polyol with caprolactam. The morphology of the electrospun webs of nylon and nylon elastomers, observed by FE-SEM, showed that the porous electrospun web was composed of nanofibers, whose diameter were in the range of 100 to 180 nm. Their behavior of melting and crystallization and the chemical structure of nylon elastomers were investigated by DSC and ATR FT-IR. Result of tensile testing indicated that nylon has higher tensile strength and lower elongation than nylon elastomers. Atmospheric plasma(APP) with $O_2$ and $N_2$ as reactive gas modified the surface of electrospun nylon and electrospun nylon elastomers allowing them higher hydrophilicity, while APP with $CH_4$ as reactive gas modified the surface of polymers allowing higher hydrophobicity.

음이온중합기구으로 나이론 6와 나이론공중합체를 합성하였다. 나이론탄성체는 카프록락탐과 이소시아네이트로 활성화된 폴리올을 음이온중합기구을 통해서 공중합을 하였다. 전기방사공정으로 제조된 나이론과 나이론공중합체는, FE-SEM으로 구조를 분석한 결과, 100$\sim$180 nm의 직경을 갖는 나노섬유들로 이루어진 다공성 부직포였다. DSC와 ATR FT-IR을 이용하여 결정화거동 및 구조를 분석하였다. 인장실험을 한 결과 나이론은 나이론탄성체에 비해서 인장강도는 크고, 신율은 감소된다. 결정영역인 PA블록과 무정형인 PE블록으로 된 나이론공중합체인 나이론 탄성체는 PE블록 비율이 클수록 인장강도는 낮아지고 신율은 증가된다. $O_2$$N_2$를 반응기체로 한 상압플라즈마로 전기방사된 나이론과 나이론탄성체의 부직포표면을 개질한 결과, 개질된 부직포표면은 표면개질 전보다 더 친수성을 보였으며 반면에 $CH_4$를 반응기체로 사용한 상압플라즈마로는 부직포표면을 개질하면 부직표면은 소수성을 나타내었다.

Keywords

References

  1. R. J. M. Borggreve, R. J. Gaymans, J. Schuijer, and T. F. Housz, 'Brittle-Tough Transition in Nylon-Rubber Blends', Polymer, 28, 1489 (1987) https://doi.org/10.1016/0032-3861(87)90348-X
  2. S. Wu, 'Phase Structure and Adhesion in Polymer Blends', Polymer, 26, 1885 (1985) https://doi.org/10.1016/0032-3861(85)90019-9
  3. M. I. Kohan, 'Nylon Plastics Handbook', p. 236, Hanser Publishers, New York, 1995
  4. J. Stehlicek, J. Hauer, and R. Puffr, 'Block Copolymers of 6-Hexanlactam and 12-Dodecanlactam', Polymer, 37, 2533 (1996) https://doi.org/10.1016/0032-3861(96)85369-9
  5. M. V. Pandya, M. Subramaniyam, and M. R. Desai, 'Synthesis and Charcterization of Nylon 6 Triblock Copolymer Using New Hybrid Soft Segment', Eur. Polym. J., 33, 789 (1997) https://doi.org/10.1016/S0014-3057(96)00282-0
  6. T. O. Ahn, S. C. Hong, H. M. Jeong, and J. H. Kim, 'Nylon 6 - Polyethersulfone - Nylon 6 Block Copolymer', Polymer, 38, 207 (1997) https://doi.org/10.1016/S0032-3861(96)00450-8
  7. R. M. Hedrick and J. D. Gabbert, ACS Symp. Ser., 270, 1135 (1985)
  8. Y. Li, Z. Huang, and Y. Lu, 'Electrospinning of Nylon 6, 66, 1010 Terpolymer', Eur. Polym. J., 42, 1696 (2006) https://doi.org/10.1016/j.eurpolymj.2006.02.002
  9. G. C. Rutledge and S. V. Fridrikh, 'Formation of Fibers by Electrospinning', Advanced Drug Delivery Rev., 59, 1384 (2007) https://doi.org/10.1016/j.addr.2007.04.020
  10. S. O. Han, J. H. Youk, K. D. Min, Y. O. Kang, and W. H. Park, 'Electrospining of Cellulose Acetate Nanofiber Using a Mixed Solvents of Acetic Acid-Water', Mater. Lett. 62, 759 (2008) https://doi.org/10.1016/j.matlet.2007.06.059
  11. Y. J. Ryu, H. Y. Kim, K. H. Lee, H. C. Park, and D. R. Lee, 'Transport Properties of Electrospun Nylon 6 Non-woven Mats', Eur. Polym. J., 39, 1883 (2003) https://doi.org/10.1016/S0014-3057(03)00096-X
  12. Y. C. Ahn, S. K. Park, G. T. Kim, Y. J. Hwang, C. G. Lee, H. S. Shin, and J. K. Lee, 'Investigation on Characteristics of Thermal Conductivity Enhancement of Nanofluids', Current Appl. Phys., 6, 1030 (2006) https://doi.org/10.1016/j.cap.2005.07.013
  13. I. S. Chronakis, S. Grapenson, and A. Jakob, 'Conductive Polypyrrole Nanofibers via Electrospinning', Polymer, 47, 1597 (2006) https://doi.org/10.1016/j.polymer.2006.01.032
  14. K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y. Seo, B. Hsiao, B. Chu, and M. Hadjiargyrou, 'Control of Degradation Rate and Hydrophilicity in the Electrospun Non-woven Poly(D, L-lactide) Nanofiber Scalffold for Biomedical Applications', Biomaterials, 24, 4977 (2003) https://doi.org/10.1016/S0142-9612(03)00407-1
  15. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and R. Ramakrishna, 'A Review on Polymer Nanofibers by Electrospinning', Compos. Sci. and Techn, 63, 2223 (2003) https://doi.org/10.1016/S0266-3538(03)00178-7
  16. A. Bogaerts, E. Neyts, R. Gijbels, and J. Mullen, 'Gas Discharge Plamsa and Their Applications', Spectrochimica Acta, Part B, 57, 609 (2002) https://doi.org/10.1016/S0584-8547(01)00406-2
  17. H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. S. Sonnenfeld, P. Michel, and J. F. Behnke, 'The Barrier Discharge: Properties and Applications to Surface Treatment', Vacuum, 71, 417 (2003) https://doi.org/10.1016/S0042-207X(02)00765-0
  18. J. B. Lynch, P. D. Spence, D. E. Baker, and T. A. Postlethwaite, 'Atmospheric Pressure Plasma Treatment of Polyethylene via Pulse Barrier Discharge', J. Appl. Polym. Sci, 71, 319 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990110)71:2<319::AID-APP16>3.0.CO;2-T
  19. M. S. Kim, G. Khang, and H. B. Lee, 'Gradient Polymer Surface for Biomedical Applications', Prog. Polym. Sci., 33, 138 (2008) https://doi.org/10.1016/j.progpolymsci.2007.06.001
  20. R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens, and C. Leys, 'Non-thermal Plasma Treatment of Textiles', Surface & Coatings Technology, 202, 3427 (2008) https://doi.org/10.1016/j.surfcoat.2007.12.027
  21. R. M. Hedrick, J. D. Gabbert, 'A new RIM system from nylon 6 block copolymers: Chemistry and Structure'; presented at the AIChE National Meeting; Detroit, August 17, 1981
  22. H. Mooij et. al. in 'UTECH 90 Conference Papers'; Crain Communications: London, 118-121, 1990
  23. V. Pandya, M. Subramaniyam, and M. R. Desai, 'Synthesis and Charcterization of Nylon 6 Triblock Copolymer Using New Hybrid Soft Segment', Eur. Polym. J., 33, 789 (1997) https://doi.org/10.1016/S0014-3057(96)00282-0
  24. C. Ibanes, M. de Boissieu, L. David, and R. Seguela, 'High Temperature Behavior of the Crystalline Phase in Unfilled and Clay Filled Nylon 6', Polymer, 47, 5071 (2006) https://doi.org/10.1016/j.polymer.2006.05.025
  25. T. Sakurai, G. Amador, and T. Takahashi, 'Block Copolymers Based on Nylon 6 and Polyethylene Glycol', Polymer, 39, 4089 (1998) https://doi.org/10.1016/S0032-3861(97)00479-5
  26. J. S. Stephens, D. B. Chase, and J. F. Rabolt, 'Effect of the Electrospinning Process on Polymer Crystallization Chain Fibers Conformation in Nylon 6 and Nylon 12', Macromolecules, 37, 877 (2004) https://doi.org/10.1021/ma0351569
  27. M. Afshari, R. Kotek, and A. E. Tonelli, 'Nanofibers and Nanotechnology in Textiles', p. 71, Woodhead Publishing Ltd, London, 2007
  28. M. V. Jose, B. W. Steunrt, V. Thomas, D. R. Dean, M. A. Abdalla, G. Price, and M. Janowski, 'Morphology and Mechanical Properties of Nylon 6/MWNT Nanofibers', Polymer, 48, 1096 (2007) https://doi.org/10.1016/j.polymer.2006.12.023