• Title/Summary/Keyword: nutrient storage

Search Result 163, Processing Time 0.024 seconds

Soil Organic Matter and Nutrient Accumulation at the Abandoned Fields

  • Park, Byung Bae;Shin, Joon Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.492-500
    • /
    • 2008
  • Since vegetation significantly influences on soil carbon and nutrient storage, vegetation change has been focused on terrestrial carbon and nutrient cycling studies. In this study we investigated soil carbon and major nutrient capitals at the abandoned fields, which had different vegetation composition: a three year abandoned field ($AGR_3$), two ten years abandoned fields ($PD_{10}$ dominant with Pinus densiflora and Fraxinus rhynchophylla and $PM_{10}$ dominant with Populus maximowiczii), and an over sixty years forest ($FOR_{60}$). which were located at Hongcheon-gun, Kangwon-do, South Korea. Both main effects for organic matter (%) were significant: shallow soil > deep soil and $FOR_{60}=PM_{10}$ > $AGR_3=PD_{10}$. Nitrogen concentrations at $PM_{10}$ were the highest, while the lowest at $PD_{10}$. Available phosphorus concentrations were the highest at $PD_{10}$, which were over 10 times of site $FOR_{60}$ and $AGR_3$ at 0-10 cm soil depth. The average organic matter ($173Mg\;ha^{-1}$) and nitrogen contents ($10Mg\;ha^{-1}$) of $PM_{10}$ and $FOR_{60}$ were higher than those of $AGR_3$ and $PD_{10}$ by 57% and 42%, respectively. The available phosphorus contents above 30 cm mineral soil at $PD_{10}$ ($3.8Mg\;ha^{-1}$) and $PM_{10}$ ($1.3Mg\;ha^{-1}$) were over 120 times and 40 times more than at $FOR_{60}$. Calcium ($3.7Mg\;ha^{-1}$) and magnesium contents ($2.8Mg\;ha^{-1}$) at $FOR_{60}$ were twice or three times higher than at other sites. Organic matter amounts in 0-10 cm and 10-30 em soil had significant positive relationships with nitrogen, calcium, and magnesium contents, but not available phosphorus and potassium contents. This study could not identify the effect of chronological factor and vegetation composition on soil carbon and nutrient capital owing to diverse topography as well as limited study sites. However, this study suggests the accuracy of investigation for regional carbon and nutrient sequestration can be achieved by considering the period of abandoned time on the fields and the land use types. These results may suggest the benefits of forest restoration for soil carbon and nutrient accumulation in marginal agricultural lands in South Korea.

Effect of Applications of Soluble Ca and IBA on Soil and Leaf Ca Concentration in 'Fuyu' Sweet Persimmon (Diospyros kaki L.) Orchard (수용성 칼슘 및 IBA 처리가 '부유' 단감의 엽과 토양 내 칼슘함량에 미치는 영향)

  • Choi, Hyun-Sug;Kim, Young;Kim, Wol-Soo;Lee, Youn;Choi, Kyeong-Ju;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.3
    • /
    • pp.377-386
    • /
    • 2010
  • Sweet persimmon, 'Fuyu', is the major cultivar for MA storage, but browning of blossom end part and fruit surface darkening occur during storage and decrease fruit qualities in fresh fruit market. Calcium (Ca) has a very important role in cell membrane and reduces Ca-related fruit disorder. Therefore, this study was conducted to investigate the effect of soluble Ca fertigation and foliar applications on soil chemical properties, root activity, and leaf nutrient status. Ca concentration in the soil was higher in both Ca fertigation (Ca-FG) and Ca+IBA fertigation (Ca+IBA) treatments than the other treatments, such as control (Cont), Ca foliar application (Ca-FA), and IBA fertigation (IBA). The increase in soil Ca improved soil pH. The Ca+IBA treatment increased root activity. Leaf Ca concentration was significantly increased by the CA-F A application, followed by Ca+IBA, and Ca-FG treatments.

Relationship between Thermal Properties of Muscle Proteins and Pork Quality

  • Kuo, Hsiu-Lan;Chen, Ming-Tsao;Liu, Deng-Cheng;Lin, Lieh-Chin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.427-432
    • /
    • 2005
  • The purpose of this study was performed as model study using four animals to investigate the correction between the changes in Differential Scanning Calorimetry thermogram of muscle proteins during storage and meat freshness. M. longissimus dorsi of pork was obtained immediately after slaughter and chilled/stored at either $-2^{\circ}C$ or $25^{\circ}C$ for up to 96 h for analyses. DSC thermograms were determined and compared with pH values, ATP-related compounds, K-values, volatile basic nitrogen (VBN) levels, bacterial counts and electrophoretic behavior. Changes in pH, bacterial counts, VBN and K-values were associated with increased storage temperature and time. The levels of pH values, bacterial counts, VBN and K-values of pork samples stored at $25^{\circ}C$ were higher than those of the pork samples stored at $-2^{\circ}C$. ATP concentration decreased faster in samples stored at $25^{\circ}C$. Only IMP increased in samples stored at $-2^{\circ}C$, whereas the concentration of hypoxanthine and inosine increased in samples stored at $25^{\circ}C$. One exothermic peak and two endothermic peaks appeared on the thermograms of pork stored at either temperature. Lower transition temperature of myosin, sarcoplasmic protein and actin peaks were observed. The freshness parameters of K-value, VBN and hypoxanthine showed highly negative correlations (-0.742- -0.9980) to the changes in transition temperature. Therefore, the shift temperature on DSC thermogram can be used as an indicator of the freshness parameters of meat.

Long-term Application Effect of Silicate Fertilizer on Soil Silicate Storage and Rice Yield

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Ko, Byong-Gu;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.819-825
    • /
    • 2016
  • Monitoring of soil fertility and crop productivity in long-term application of silicate fertilizers is necessary to use fertilizers efficiently. This study was conducted to investigate effects of continuous application of silicate fertilizer for rice cultivation from 1969 to 2014. The treatments were no silicate fertilizer treatments (N, NC, NPK, and NPKC) and silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S). The 46-yr input of $2\;ton\;ha^{-1}yr^{-1}$ of silicate fertilizer increased pH 0.6 ~ 1.1 and exchangeable Ca $2.0{\sim}2.4cmol_c\;kg^{-1}$ in silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S) compared with no silicate fertilizer treatments (N, NC, NPK, and NPKC) because silicate fertilizer included Ca component. Also, available silicate concentrations of silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S) increased $169mg\;kg^{-1}$ compared to no silicate fertilizer treatments. In Period II ('90~'14), the mean annual Si field balance varied from 62 to $175kg\;ha^{-1}yr^{-1}$ in silicate fertilizer treatments, indicating continuous accumulation of soil Si. Silicon uptake and grain yield of rice had greater differences between N treatment and N+S treatment than other treatments. This showed that the application of silicate fertilizer had greater effect in nutrient-poor soils than in proper nutrient soils. Thus the application of silicate fertilizer led to improvement the fertility of soil and increasement of rice production for the lack of soil nutrients.

Studies on the Culture Media and the Optimal Storage Conditions of Bioluminescent Bacteria Photobacterium phosphoreum (생체발광균주 Photobacterium phosphoreum의 배양배지 및 최적 저장조건에 관한 연구)

  • 조동욱;전억한;김병용;김은기;함영태
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.74-78
    • /
    • 2000
  • Vibrio, Photobacterium, Alteromonas and Xenorhabdus species are capable of emitting light, called bioluminescence. They exist in marine, freshwater and terrestrial environments. Bacterial bioluminescent reaction is that reduced riboflavin phosphates and a long-chain aldehyde are oxidized in the presence of molecular oxygen and enzyme luciferase. This experiment aims to develop the proper culture media and to optimize the storage condition for the recovery of bioluminescent activity in Photobacterium phosphoreum. The Luria broth (LB) medium was modified for cultivation of Photobacterium phophoreum, called as modified LB(mLB) medium. The mLB medium is LB fortified with 3% glycerol and 1.5% NaCl. In mLB medium. bacterial growth and bioluminescent activity are 25% higher than those in a Nutrient broth medium. When the cell stocks were stored at $-20^{\circ}C$, $-70^{\circ}C$ and LN2 for 3 months, cell growth and bioluminescent activity of culture after stored at $-20^{\circ}C$ were better than those of other treatments. The highest bioluminescent activity obtained at the late exponential phase in all treatments. When the cell stock was freeze-dried with 5% adonitol as a cryoprotectant, the recovery of cell was better than those of control and freeze-dried cell stock without addition of cryoprotectant.

  • PDF

Nutrient Transfer in the Application of the Swine Slurry Liquid Fertilizer in Rice Paddy (벼 재배에서 양돈분뇨 액비 시용시 양분이동)

  • Kwon, Soon-Ik;Kim, Kwon-Rae;Kim, Min-Kyeong;Jung, Goo-Bok;Hong, Seung-Gil;Shin, Joong-Du;Park, Woo-Kyun;Seong, Ki-Seog;Lee, Deog-Bae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.77-85
    • /
    • 2010
  • Pig slurry has been considered as environmental waste to be treated in an appropriate manner. Recently, there has been the movement toward reusing the pig slurry as an alternative fertilizer sources for agricultural lands. For instance, SCB(Slurry Composting & Biofiltration) liquid fertilizer has been developed and widely used in Korea. However, the impacts of swine slurry liquid fertilizers on both agricultural environment and crop yield have not been investigated yet. Therefore, the current study was conducted to accumulate the basic data which can be subsequently used to determine appropriate application amount of swine slurry liquid fertilizers (SCB liquid fertilizer and storage liquid fertilizer) as well as the application method for each liquid fertilizer. For this, growth of rice was cultivated under the treatment of SCB liquid fertilizer, storage liquid fertilizer, and chemical fertilizer. Also, control treatment (no fertilizer) was included for comparison and all treatments were conducted in five replication. Rice growth was good with the treatment in the order of chemical fertilizer>storage liquid fertilizer>SCB liquid fertilizer>control and likewise, the yield amount of rice straw was in the same order of rice growth. The rice yield amount appeared to be no difference among the treatment except control which showed the least yield amount. Also there was no difference in nitrogen and phosphorus concentrations in rice among the treatment except control which showed the least concentration.

The Changes of Nutrient Composition in the Edible Potato Varieties during Storage (식용감자 품종의 저장기간별 영양성분 변화)

  • Youn, Jong-Tag;Kwon, Hye-Jeong;Hong, Geo-Pyo;Ahn, Mun-Seob;Heu, Nam-Ki;Lim, Hak-Tae;Kim, Kwang Ho
    • Horticultural Science & Technology
    • /
    • v.17 no.4
    • /
    • pp.467-469
    • /
    • 1999
  • This study was conducted to examine the changes of nutritive substances in the edible potato varieties ('Superior', 'Atlantic', 'Irish Cobbler', 'Dejima') during storage under low temperature condition($4^{\circ}C$, 85-90% RH) from January to May. The items examined in this experiment were moisture, free soluble sugars, starch and vitamin C. The contents of starch and vitamin C decreased with increasing storage period. The rates of decrease in starch and vitamin C contents were high in February and low after that. The contents of moisture and free soluble sugars did not show a constant tendency during storage period. The contents of glucose and fructose were the highest in February and March. Among the four varieties, 'Superior' contained highest vitamin C, free sugar, and moisture, while 'Atlantic' contained the highest starch.

  • PDF

Effects of Post-harvest Storage Duration and Variety on Nutrient Digestibility and Energy Content Wheat in Finishing Pigs

  • Guo, P.P.;Li, P.L.;Li, Z.C.;Stein, H.H.;Liu, L.;Xia, T.;Yang, Y.Y.;Ma, Y.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1488-1495
    • /
    • 2015
  • This study was conducted to investigate the effects of post-harvest storage duration and wheat variety on the digestibility and energy content of new season wheat fed to finishing pigs. Two wheat varieties (Shi and Zhong) were harvested in 2013 and stored in the warehouse of the Fengning Pig Experimental Base at China Agricultural University for 3, 6, 9, or 12 mo. For each storage period, 12 barrows were placed in metabolism crates and allotted to diets containing 1 of the 2 wheat varieties in a randomized complete block design. The experimental diets contained 97.34% wheat and 2.66% of a vitamin and trace mineral premix. With an extension of storage duration from 3 mo to 12 mo, the gross energy (GE) and crude protein (CP) of the wheat decreased by 2.0% and 12.01%, respectively, while the concentration of neutral detergent fiber (NDF), acid detergent fiber (ADF) and starch content increased by 30.26%, 19.08%, and 2.46%, respectively. Total non-starch polysaccharide, total arabinose, total xylose and total mannose contents decreased by 46.27%, 45.80%, 41.71%, and 75.66%, respectively. However, there were no significant differences in the chemical composition between the two wheat varieties with the exception of ADF which was approximately 13.37% lower in Shi. With an extension of storage duration from 3 mo to 12 mo, the digestible energy (DE), metabolizable energy (ME) content and the apparent total tract digestibility of GE, CP, dry matter, organic matter, ether extract, ADF and metabolizability of energy in wheat decreased linearly (p<0.01) by 5.74%, 7.60%, 3.75%, 3.88%, 3.50%, 2.47%, 26.22%, 27.62%, and 3.94%, respectively. But the digestibility of NDF changed quadratically (p<0.01). There was an interaction between wheat variety and storage time for CP digestibility (p<0.05), such that the CP digestibility of variety Zhong was stable during 9 mo of storage, while the CP digestibility of variety Shi decreased (p<0.05). In conclusion, the GE, DE, and ME of wheat was stable during the first 3 to 6 mo of post-harvest storage, and decreased during the following 6 to 12 mo of storage under the conditions of this study.

Particle Size Distribution and Stability of Lipid Emulsion in Total Nutrient Admixtures (Total Nutrient Admixtures(TNAs)에서 지질유제의 입자크기 분포 및 안정성)

  • Park, Seung Mi;Jang, Eun Ju;Shin, Wan Gyoon;Lee, Byung Koo;Lee, Min Wha
    • Korean Journal of Clinical Pharmacy
    • /
    • v.3 no.2
    • /
    • pp.125-130
    • /
    • 1993
  • The particle size distribution and physical stability of commercial lipid emulsion inject, $intralipos^R$ before and after mixture with total parenteral nutrition(TPN) was tested. Three TNAs were prepared by adding intralipos to P-TPN, Neo-TPN and IVH-2 respectively. Particle size of fat emulsion in three TNA preparations were measured by using LPA-3000 photon correlater. Each TNAs was stored for 48 hours at $4^{\circ}C\;and\;25^{\circ}C.$ During storage, three TNAs showed the particle size in the range of 40-1000nm(about $100\%$ of total fat) and in the range of 1000-8000nm(less than $0.005\%$ of total fat). All TNAs were stable in terms of pH and visual appearance. The results showed that added lipid emulsion was stable for 48 hours at $4^{\circ}C\;and\;25^{\circ}C$.

  • PDF

Current status in calcium biofortification of crops (작물의 생합성 칼슘 함량 증대 연구 현황)

  • Lee, Jeong-Yeo;Nou, Ill-Sup;Kim, Hye-Ran
    • Journal of Plant Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • Calcium is an essential nutrient for living organisms, with key structural and signaling roles. Its deficiency in plants can result in poor biotic and abiotic stress tolerance as well as reduced crop quality and yield. Calcium deficiency in humans causes various diseases such as osteoporosis and rickets. Biofortification of calcium in various food crops has been suggested as an economic and environmentally advantageous method to enhance human intake of calcium. Recent efforts to increase the levels of calcium in food crops have used calcium/proton antiporters ($CAXs$) and modified one to increase calcium transport into vacuoles through genetic engineering. It has been reported that overall calcium content of transgenic plants has been increased in their edible portions with some adverse effects. In conclusion, biofortification of calcium will add more value in crops as well as will be beneficial for animal and human. Therefore, more fundamental studies on the mechanisms of calcium ion storage and transporting are essential for more effective calcium biofortification.