• Title/Summary/Keyword: nutrient solution management

Search Result 68, Processing Time 0.028 seconds

Efficacy of Three Different Plant Species for Arsenic Phytoextraction from Hydroponic System

  • Tiwari, Sarita;Sarangi, Bijaya Ketan;Pandey, Ram Avatar
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.145-149
    • /
    • 2014
  • Arsenic (As) is one of the heavy metals which causes acute bio-toxicity even at low concentration and has disastrous effect on environment. In some countries, As contamination has become alarming and increasing day by day as consequences of unsustainable management practices. Many existing physical, chemical and biological processes for As removal from water system are not feasible due to techno-economic limitations. The present study highlights the scope of biological strategy for As removal through phytoextraction. Arsenic uptake and accumulation in the biomass of three plant species and their As tolerance abilities have been investigated to develop an efficient phytoextraction system in combination of these plant species. Three non-crop plant species, Pteris vittata; Mimosa pudica, and Eichhornia crassipus were treated with 0-200 mg/L As in liquid nutrient solution for 14 days. P. vittata accumulated total 9,082.2 mg (8,223 mg in fronds) As/kg biomass and Eichhornia total 6,969 mg (4,517 mg in fronds)/kg biomass at 200 mg/L As concentration, respectively. Bioaccumulation factor (BF) and translocation factor (TF) were estimated to differentiate between excluders, accumulators and accumulation in above ground biomass. Pteris and Eichhornia have highest BF (67 and 17) and TF (64 and 3), respectively. In contrast, Mimosa accumulated up to 174 mg As/kg plant biomass which is low in comparison with other two plants, and both BF and TF were ${\leq}1$. This study reveals that Pteris and Eichhornia are As hyperaccumulator, and potential candidates for As removal from water system.

Status of Automatization in Protected Horticultural Facilities and Prospect of Plant Factory in Korea (한국의 원예시설 자동화 현황 및 식물공장의 발전방향)

  • 윤진하
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.91-115
    • /
    • 1996
  • In the recent years, protected horticultural facilities have been modernized and glasshouses are also propagating in Korea, even most vegetables production are conducted in the traditional plastic houses covered with, for example, PVC film for just temperature keeping. It would limit the productivity and competitivity of the vegetable production industry without automatization and high quality year round production. A plant factory, aimed to produce vegetables in the limited areas, was initiated in Christensen farm, Denmark in 1957, and widely propagated in some developed countries. As it has the automatized system which enables to keep optimized environment conditions, it will be the best facility for high quality products as well as year round planned production. However, we have not even started the plant factory production. Since the plant factory is requiring lots of resources, besides plant cultivation technologies, such as environment control, automatic engineering and robotics, our approach to the development of plant factories should be minded on Practical Plant Factories considering our current farming practices and least capital needs rather than blindly employing the advanced technologies from developed countries. Thus, Korean plant factory development can be initiated with year round leaf vegetables production in NFT or DFT cultivation system instead of the moval bed system, in which aerial environment factors such as light, temperature, humidity and CO$_2$ concentration and root environment ones such as solution concentration, temperature, pH and water soluble oxygen shall be automatically controlled. And the seeding, seedling and transplanting operations shall be accomplished in the house entrance, and the harvesting and grading opreations shall be conducted in the house exit. For practical plant factories, environment control technologies including artificial light source, illumination and air conditioning, automatic management for nutrient solution and automatic production line of moval bed system, transplanting and harvest should be developed along with researches on the cost reduction of factory building construction.

  • PDF

Field Survey for Well Water Quality in Hydroponic Farms (양액재배 농가의 원수 수질 조사)

  • 배종향;조영렬;이용범
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.80-88
    • /
    • 1995
  • This survey has been conducted, mostly in inorganic ions, to get some basic data for the culture solution composition, analyzing water quality of some hydroponic farms. pH range was shown from 5.95 to 7.61 and the average of 6.75. Relatively wide range of EC, from 0.07 to 0.97 mS/cm and the average of 0.35 mS/cm were obtained. 19.5 percent of farms investigated showed over 0.5 mS/cm of EC, which means more careful culture solution composition and its management are needed in these farms. Na concentration ranged from 5.0 to 41.4 ppm and Cl concentration ranged from 10 to 99 ppm were shown and their average were 20.38 ppm and 35.16 ppm, respectively. Higher Na concentration compared to standard of 11.5 ppm was shown in 75% of farms and Higher Cl concentration compared to standard of 35.5 ppm was shown in 33.3% of farms. These concentration were considered rather high, which can cause salt accumulation in substrate mats. Ca and Mg concentrations were ranged from 1.60 to 131 ppm and 0.96 to 34.1 ppm, respectively. Average concentrations were 26.11 ppm in Ca and 8.10 ppm in Mg. In case of HCO$_3$, 24 to 295 ppm of concentration range and average of 63.13 ppm were obtained. Fe range was 0.01 to 0.87 ppm and its average was 0.14 ppm. This results showed that Fe elimination was necessary in well water.

  • PDF

Measurement of $\textrm{CO}_2$ Concentration and Leaf Area Index for Crop Photosynthesis Model in Sweet Pepper (단고추의 작물 광합성 모델을 위한 $\textrm{CO}_2$ 농도와 엽면적지 수 측정)

  • Lee, Beom-Seon;Chung, Soon-Ju;Jang, Hong-Gi
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.192-201
    • /
    • 1999
  • This study was aimed to introduce the measurement of $CO_2$ concentration and leaf area index in the phytotron for predicting the effect of CO.E, light and leaf area index on the instantaneous photosynthetic rate of sweet pepper with the existing ASKAM model. Measurements were made in 2 semi-closed phytotron compartments in which three different $CO_2$ concentrations were applied at random. Plants were grown on containers with circulating nutrient solution at 21$^{\circ}C$ and 80-95% relative humidity. The model estimates crop net $CO_2$ uptake for short time intervals during the day based on short-term data of daily radiation, temperature and $CO_2$ concentration. During the photosynthesis measurements, $CO_2$ concentrations in both compartments and in the basement were measured every minute. This was also done for the flow of pure $CO_2$ into the compartment, global radiation, photosynthetic active radiation inside the compartment, temperature and relative humidity. Crop growth models summarize our knowledge on crop behavior and have as such a wide range of applications in analysis, crop management and thus as a farm management tool.

  • PDF

Appropriate Daily Last Irrigation Time in Coir Bag Culture for Tomato (토마토 코이어 자루재배시 적정 급액마감시각 구명)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Moon-Hang;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.12-19
    • /
    • 2012
  • This research was performed to determine the appropriate daily last irrigation time to enhance the plant growth and the water and fertilizer use efficiencies in coir bag culture for tomato plant. The time to finish the daily irrigation was set by 1, 2, 3 and 4 hours before the sunset. The water content in the substrate was greatly affected by the last irrigation time. The earlier the last time, the greater the daily fluctuation of water contents in the substrate. The daily irrigation times were not affected by using irrigation management system controlled by drainage electrodes or the physiochemical properties of coir. The growth characteristics were not significantly different among the treatments. The highest marketable yields were obtained in the treatment finishing two hours before sunset, and the lowest yields were obtained in the the treatment finishing 4 hours before sunset. Based on the result from surveying quantity of irrigated water for 128 days of the experiment period, the water and fertilizer use efficiencies were lowest in the treatment finishing 4 hours before sunset, and the highest in the treatment finishing 2 hours before sunset. In terms of plant growth, yields, water and fertilizer use efficiencies, 2 hours before sunset treatment was determined as the most economical and desirable irrigation schedule.

Characteristics of Root Media Moisture in Various Irrigation Control Methods for Tomato Perlite Bag Culture (토마토 펄라이트 자루재배에서의 급액제어 방법에 따른 배지의 수분변화)

  • Sim Sang-Youn;Lee Su-Yeon;Lee Sang-Woo;Seo Myeong-Whoon;Lim Jae-Wook;Kim Soon-Jae;Kim Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.15 no.3
    • /
    • pp.225-230
    • /
    • 2006
  • Tomatoes were experimented in perlite bags for various irrigation control methods to elucidate the efficient method for nutrient solution management. The irrigation control methods were for 3 different types such as control by drainage level sensor (PROBE), control by integrated solar radiation (ISR), and control by time clock (Timer). The substrate weight was maintained stably in the proper range in PROBE treatment, regardless of daily solar radiations or growth stages. The bed weights in the treatments of ISR and Timer were changed largely. Growth as well as total yield was the highest in PROBE treatment. There was no difference in soluble solids (Brix %) among the treatments. Consequently, ISR control could be useful only with appropriate timer control and also calibration. Control by drainage level sensor was suggested to be the most satisfactory as irrigation management method.

Rearing Black Bengal Goat under Semi-Intensive Management 1. Physiological and Reproductive Performances

  • Chowdhury, S.A.;Bhuiyan, M.S.A.;Faruk, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.477-484
    • /
    • 2002
  • Ninety pre-puberal (6-7 months) female and 15 pre-puberal male Black Bengal goats were collected on the basis of their phenotypic characteristics from different parts of Bangladesh. Goats were reared under semi-intensive management, in permanent house. The animals were vaccinated against Peste Des Petits Ruminants (PPR), drenched with anthelmentics and deeped in 0.5% Melathion solution. They were allowed to graze 6-7 h along with supplemental concentrate and green forages. Concentrates were supplied either 200-300 g/d (low level feeding) or quantity that supply NRC (1981) recommended nutrient (high level of feeding). Different physiological, productive and reproductive characteristics of the breed were recorded. At noon (temperature=$95^{\circ}F$ and light intensity=60480 LUX) rectal temperature and respiration rate of adult male and female increased from 100.8 to $104.8^{\circ}F$ and 35 to 115 breath/min, indicated a heat stress situation. Young female attain puberty at an average age and weight of 7.2$\pm$0.18 months and 8.89$\pm$0.33 kg respectively. Mean age and weight at 1st kidding were 13.5$\pm$0.49 months and 15.3$\pm$0.44 kg respectively. It required 1.24-1.68 services per conception with an average gestation length of 146 days. At low level of feeding the postpartum estrus interval was 37$\pm$2.6 days, which reduced (p<0.05) with high feeding level to 21$\pm$6.9 days. Kidding interval also reduced (p<0.05) from 192 d at low feeding level to 177 d at high feeding level. On an average there were two kiddings/doe/year. Average litter sizes in the 1st, 2nd, 3rd and 4th parity were 1.29, 1.71, 1.87 and 2.17 respectively. Birth weights of male and female kids were 1.24 and 1.20 kg respectively, which increased (p<0.05) with better feeding. Although kid mortality was affected (p<0.05) by dam's weight at kidding, birth weight of kid, milk yield of dam, parity of kidding, season of birth, but pre-netal dam's nutrition found to be the most important factor. Kid mortality reduced from 35% at low level of feeding to 6.5% at high level of feeding of dam during gestation. Apparently, this was due to high (p<0.05) average daily milk yield (334 vs. 556 g/d) and heavier and stronger kid at birth at high feeding level.

Control of Daily First Drainage Time by Irrigation Management with Drainage Level Sensor in Tomato Perlite Bag Culture (배액전극제어법에 의한 토마토 펄라이트 자루재배시 일중 첫 배액 제어)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.409-414
    • /
    • 2010
  • The first drainage time in a day was controlled for precise irrigation management with low consumption of nutrient solution in tomato perlite bag culture system by measuring water level of drained water in drainage catchment part. This method automatically adjusted the irrigation time under any condition of light, temperature and humidity, resulting in stable water content in substrates. However, it was difficult to keep the time consistent as they were set. It drained with the deviation of 20 min in the treatment in which the first drainage time was set at 10:00 and 50 min in the treatment set at 10:30. The first drainage time was not constant, but the drain occurred stably before noon in the treatment of which irrigation frequency was longer than 30 min. The drainage ratio was better balanced in all the treatments using drainage level sensors than the treatment using time clock for irrigation control. High water and fertilizer efficiencies were obtained. Although the growth, total yield and sugar content were not significantly different between the treatments, fruit weight was higher in the treatments using drainage level sensors than that using timer.

Risk Analysis for the Harvesting Stage of Tomato Farms to Establish the Good Agriculture Practices(GAP) (GAP 모델 확립을 위한 토마토 농장 수확단계의 위해요소 조사 및 분석)

  • Lee, Chae-Won;Lee, Chi-Yeop;Heo, Rok-Won;Kim, Kyeong-Yeol;Shim, Won-Bo;Shim, Sang-In;Chung, Duck-Hwa
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.141-153
    • /
    • 2012
  • Samples collected from six tomato farms(A, B, C : soil culture, D, E, F : Nutriculture) located in Gyeongsangnam-do were tested for the analyses of biological(sanitary indications, major foodborne pathogens, fungi), chemical(heavy metals, pesticides) and physical hazards. The highest levels of total bacteria(7.5 log CFU/g) and coliforms(5.0 log CFU/g) in soil culture farms were higher than those of nutriculture farms(total bacteria: 2.5 log CFU/mL, coliforms: 0.6 log CFU/mL). In crops and personal hygiene soil culture farms showed a slightly higher contamination levels. From all farms, the levels of fungi in soil farms were higher than those of nutrient solution. In case of major pathogens, Bacillus cereus and Staphylococcus aureus were detected in all sample with the exception of nutrient solution. Meantime, Escherichia coli, Listeria monocytogenes, E.coli O157 and Salmonella spp. were not detected. For airborne bacteria, soilculture farms showed less contamination than nutriculture farms. A piece of glass and can was confirmed asphysical hazards. Heavy metal(Cd, Pb, Cu, Cr, Hg, Zn, Ni and As) and pesticide residues as chemical hazards were detected, but their levels were lower than the regulation limit. These results demonstrate that potential hazards on harvesting stage of tomato fam were exposed. Therefore, proper management is needed to prevent biological hazards due to cross-contamination, while physical and chemical hazards were in appropriate levels based on GAP criteria.

Growth and Quality of Two Melon Cultivars in Hydroponics Affected by Mixing Ratio of Coir Substrate and Different Irrigation Amount on Spring Season (멜론 봄 재배 시 코이어 배지경에서 배지 혼합 비율과 급액량에 따른 생육 및 품질)

  • Choi, Su hyun;Lim, Mi Yeong;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.376-387
    • /
    • 2019
  • Melons are mostly grown in soil, but it is susceptible to damage due to injury by continuous cropping such as Fusarium wilt and root rot. Hydroponic cultivation system can overcome the disadvantages of soil cultivation with precise nutrition management and a clean environment. When using the coir substrate, the most environmentally friendly organic substrate used for hydroponics, it is analyzed how the growth and fruit quality of the melon depends on the ratio of chips and dust and the amount of irrigation. The purpose of this study was to provide the basic data of melon hydroponics when cultivated in spring. The two types of the coir substrates used in the experiments were chip and dust ratios of 3 :7 and 5 : 5 respectively. The substrate with high dust ratios had excellent physical characteristics, such as container capacity and total porosity, and the drainage EC level showed a high value of $3.0-6.8dS{\cdot}m^{-1}$. When the amount of irrigation is provided based on the drainage rate, the group provided the nutrient solution on the basis of 10% drainage supplied 91 L per plant, which was reduced by about 30% compared to the group with the highest water supply. In addition, the total drainage showed less than 10 L per plant with a minimum water supply and was reduced by 30 - 70% in substrate with a high dust rates. In substrate with high water supply and high dust ratio, leaf growth and fruit enlargement were good, and the soluble solids content varies greatly from cultivar to cultivar. If you provided the amount of irrigation based on 10% drainage rate, the fruit weight will be decreased, but the amount of irrigation can be reduced. Therefore, it is considered that managing the water & nutrient properly taking into account the characteristics of coir substrate and cultivar can produce melon of uniform quality using hydroponics.