Growth and Quality of Two Melon Cultivars in Hydroponics Affected by Mixing Ratio of Coir Substrate and Different Irrigation Amount on Spring Season

멜론 봄 재배 시 코이어 배지경에서 배지 혼합 비율과 급액량에 따른 생육 및 품질

  • Choi, Su hyun (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Lim, Mi Yeong (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Choi, Gyeong Lee (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Kim, So Hui (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Jeong, Ho Jeong (Protected Horticulture Research Institute, NIHHS, RDA)
  • 최수현 (국립원예특작과학원 시설원예연구소) ;
  • 임미영 (국립원예특작과학원 시설원예연구소) ;
  • 최경이 (국립원예특작과학원 시설원예연구소) ;
  • 김소희 (국립원예특작과학원 시설원예연구소) ;
  • 정호정 (국립원예특작과학원 시설원예연구소)
  • Received : 2019.08.22
  • Accepted : 2019.10.02
  • Published : 2019.10.30


Melons are mostly grown in soil, but it is susceptible to damage due to injury by continuous cropping such as Fusarium wilt and root rot. Hydroponic cultivation system can overcome the disadvantages of soil cultivation with precise nutrition management and a clean environment. When using the coir substrate, the most environmentally friendly organic substrate used for hydroponics, it is analyzed how the growth and fruit quality of the melon depends on the ratio of chips and dust and the amount of irrigation. The purpose of this study was to provide the basic data of melon hydroponics when cultivated in spring. The two types of the coir substrates used in the experiments were chip and dust ratios of 3 :7 and 5 : 5 respectively. The substrate with high dust ratios had excellent physical characteristics, such as container capacity and total porosity, and the drainage EC level showed a high value of $3.0-6.8dS{\cdot}m^{-1}$. When the amount of irrigation is provided based on the drainage rate, the group provided the nutrient solution on the basis of 10% drainage supplied 91 L per plant, which was reduced by about 30% compared to the group with the highest water supply. In addition, the total drainage showed less than 10 L per plant with a minimum water supply and was reduced by 30 - 70% in substrate with a high dust rates. In substrate with high water supply and high dust ratio, leaf growth and fruit enlargement were good, and the soluble solids content varies greatly from cultivar to cultivar. If you provided the amount of irrigation based on 10% drainage rate, the fruit weight will be decreased, but the amount of irrigation can be reduced. Therefore, it is considered that managing the water & nutrient properly taking into account the characteristics of coir substrate and cultivar can produce melon of uniform quality using hydroponics.

최근 수경재배에서 가장 많이 사용되는 친환경 유기배지인 코이어 배지를 사용하였을 때 코이어 칩과 더스트 비율, 급액량에 따라 멜론의 생육과 과실 품질을 분석하고 봄 재배시 코이어 배지를 이용한 멜론 수경재배의 기초 자료를 제공하고자 본 연구를 수행하였다. 실험에 사용한 2 종류의 코이어 배지는 칩과 더스트의 비율이 각각 3:7, 5:5이었으며, 배액률 10, 20, 30% 수준으로 급액하였을 때 멜론의 생육과 품질 변화, 배지의 물리적 화학적 변화를 분석하였다. 배액률 10%를 기준으로 양액을 공급한 처리구는 총 급액량이 주당 91L로 급액량이 가장 많은 배액률 30% 처리구에 비해 약 30% 절감되었다. 총 배액량 또한 급액량이 가장 적은 배액률 10% 처리구에서 주당 10L 이하로 낮은 값을 나타내었다. 더스트 비율이 높은 칩:더스트 3:7 배지는 5:5 배지보다 총 배액량이 약 30-70% 감소하였다. 급액량이 많고 더스트 비율이 높은 3:7 배지를 사용했을 경우 엽생육과 과실 비대가 좋았고 당도는 품종 간 차이가 컸다. 배액률 30%를 기준으로 급액하면 배액률 10% 기준으로 급액하였을 때보다 과중이 21% 증가하였다. 더스트의 비율이 높은 3:7 배지는 5:5 배지보다 용기용수량, 공극률 등 배지 물리성이 우수하였고, 재배 기간 중 네트발현기 이후 배액 EC가 $3.0-6.8dS{\cdot}m^{-1}$로 높은 값을 나타내었다. 재배 품종 특성 및 재배 조건 등을 고려하여 적정한 양수분 관리를 하면 코이어 배지를 이용한 수경재배 시 고품질의 멜론을 생산할 수 있을 것으로 판단된다.


Supported by : 농촌진흥청


  1. Abad, M., P. Noguera, R. Puchades, A. Maquieira and V. Noguera. 2002. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresour. Technol 82:241-245.
  2. Aljibury F. K. and May D. 1970. Irrigation schedules and production of processing tomatoes on the san joaquin valley westside. Calif Agric 24:10-11.
  3. An, C. G., Y. H. Hwang, G. M. Shon, C. S. Lim, J. L. Cho and B. R. Jeong. 2009. Effect of irrigation amount in rockwool and cocopeat substrates on growth and fruiting of sweet pepper during fruiting period. Kor. J. Hort. Sci. Technol 27:233-238. (in Koean)
  4. Chang, Y. H., Y. H. Hwang, C. G. An, H. S. Yoon, J. U. An, C. S. Lim and G. M. Shon. 2012. Effects of non-drainage hydroponic culture on growth, yield, quality and root environments of muskmelon (cucumis melo L.). Journal of Bio-Environment Control 21:348-353. (in Koean)
  5. Cho, M. S., Y. K. Na, W. Y. An, H. K. Lim and K. C. Cho. 1999. Effect of growth and fruit characteristics on nutrient feeding method of hydroponics in melon. Kor. J. Hort. Sci. Technol 17:637. (in Koean)
  6. Choi, G. L., K. H. Yeo, S. H. Choi, H. J. Jeong, S. Y. kim, N. J. Kang and H. G. Choi. 2017. Moisture retention and diffusion characteristics of the coir substrate according to the ratio of chip and dust. Hortic. Sci. Technol 35:92. (in Koean)
  7. Choi, G. L., M. W. Cho, J. W. Cheong, H. C. Rhee, Y. C. Kim, M. Y. Roh and Y. I. Kang. 2012. Effect of ec levels in nutrient solution on the growth of juvenile rose in hydroponics using coir substrate. Journal of Bio-Environment Control 21:317-321. (in Koean)
  8. Choi, J. M., L. Y. Kim, and B. G. Kim. 2009. Soilless substrates. Hakyesa, Daejeon, Korea. (in Koean)
  9. Dorais M, P. A., and Gosselin A. 2001. Greenhouse tomato fruit quality. Hort Reviews 26:239-319.
  10. FAO. 2019. Crop statistics. Retrieved from
  11. Handrek, K. A. 1993. Properties of coir dust, and its use in the formulation of soilless potting media. Comm. Soil Sci. Plant Anal 24:349-363.
  12. Hayata, Y., T. Tabe, S. Kondo, and K. Inoue. 1998. The effects of water stress on the growth, sugar and nitrogen content of cherry tomato fruit. J. Japan. Soc. Hort. Sci 65:759-766.
  13. Kim, H. J. and Y. S. Kim. 2003. Effect of irrigation duration by integrated sol radiation on growth and water use efficiency of muskmelon grown in perlite culture. J. Kor. Soc. Hort. Sci 44:146-151. (in Koean)
  14. Kim, H. M., K. O. No and S. J. Hwang. 2016. Use of pellet or cube-type phenolic foam as an artificial medium for production of tomato plug seedlings. Kor. J. Hort. Sci. Technol 34:414-423. (in Koean)
  15. Lee, M. W. 2006. Soil biology. Dongguk Univ. Press. (in Koean)
  16. Lee, W. J., J. H. Lee, K. S. Jang, Y. H. Choi, H. T. Kim and G. J. Choi. 2015. Development of efficient screening methods for melon plants resistant to fusarium oxysporum f. Sp. Melonis. Kor. J. Hort. Sci. Technol 33:70-82. (in Koean)
  17. Lemaire, F. 1994. Physical, chemical and biological properties of growing medium. Acta Hortic 396:273-284.
  18. Li, X. R., H. N. Cao, K. C. Yoo, and I. S. Kim. 2001. Effect of limited supplying frequency and amount of nutrient solutions on the yield and fruit quality of tomato grown in ash ball. J. Kor. Soc. Hort. Sci 42: 501-505. (in Koean)
  19. MAFRA. 2018. Present status of greenhouse and vegetable production in 2017. Sejong, Korea. p. 52-165. (in Koean)
  20. Park, D. K., J. K. Kwon, J. H. Lee, Y. C. Um, H. T. Kim and Y. H. Choi. 1998. The effect of soil water content during at fruit ripening stage on yield and quality in musk melon. J. Bio. Fzc. Env. 7:330-335. (in Koean)
  21. RDA. 2012. Manual for agriculture investigation. Suwon, Korea 590-593. (in Koean)
  22. RDA. 2013. Nutrient solution management technology of strawberry in high bed hydroponic cultivation. Suwon, Korea p. 8. (in Koean)
  23. RDA. 2018. Melon farming skill guide. Wanju, Korea p. 31-99. (in Koean)
  24. Rhee, H. C., M. W. Cho, Y. C. Um, J. M. Park and J. H. Lee. 2008. Control of irrigation amount for production of high quality fruitt in melon fertigation cultivation. Journal of Bio-Environment Control 17:288-292. (in Koean)
  25. Soffer H and Burger D. 1989. Plant propagation using an areohydroponics system. HortScience 24:154.
  26. Wu, H. C., L. F. Chan, M. L. Wei and H. Y. Lu. 2010. A simple and inexpensive technique for estimating leaf surface area of muskmelon (Cucumis melo L.). J. Taiwan Agric. Res. 59:71-77.