• Title/Summary/Keyword: nutrient loading

Search Result 160, Processing Time 0.028 seconds

Investigating the Impact of Best Management Practices on Nonpoint Source Pollution from Agricultural Lands

  • ;Saied Mostaghimi
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.1-19
    • /
    • 1990
  • Abstract Over the last several decades, crop production in the United States increased largely due to the extensive use of animal waste and fertilizers as plant nutrient supplements, and pesticides for crops pests and weed control. Without the application of animal waste best management, the use of animal waste can result in nonpoint source pollution from agricultural land area. In order to increase nutrient levels and decrease contamination from agricultural lands, nonpoint source pollution is responsible for water quality degradation. Nonpoint source pollutants such as animal waste, ferilizers, and pesticides are transported primarily through runoff from agricultural areas. Nutrients, primarily nitrogen and phosphorus, can be a major water quality problem because they cause eutrophic algae growth. In 1985, it was presented that Watershed/Water Quality Monitoring for Evaluation BMP Effectiveness was implemented for Nomini Creek Watershed, located in Westmoreland County, Virginia. The watershed is predominantly agricultural and has an aerial extent of 1505 ha of land, with 43% under cropland, 54% under woodland, and 3% as homestead and roads. Rainfall data was collected at the watershed from raingages located at sites PNI through PN 7. Streams at stations QN I and QN2 were being measured with V-notch weirs. Water levels at the stream was measured using an FW-l Belfort (Friez FWl). The water quality monitoring system was designed to provide comprehensive assessment of the quality of storm runoff and baseflow as influenced by changes in landuse, agronomic, and cultural practices ill the watershed. As this study was concerned with the Nomini Creek Watershed, the separation of storm runoff and baseflow measured at QNI and QN2 was given by the master depletion curve method, and the loadings of baseflow and storm runoff for TN (Total Nitrogen) and TP (Total Phosphorus) were analyzed from 1987 through 1989. The results were studied for the best management practices to reduce contamination and loss of nutrients, (e.g., total nitrogen and total phosphorus) by nonpoint source pollution from agricultural lands.

  • PDF

Pollutant Load Characteristics of a Rural Watershed of Juam Lake (주암호 농촌 소유역 오염부하특성)

  • Han, Kuk-Heon;Yoon, Kwang-Sik;Jung, Jae-Woon;Yoon, Suk-Gun;Kim, Young-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.77-86
    • /
    • 2005
  • A monitoring study has been conducted to identify hydrologic conditions, water quality and nutrient loading characteristics of small watershed in Juam Lake. Climate data of the watershed were collected; flow rate was measured and water quality sampling was conducted at the watershed outlet for this study. Water quality data revealed that T-P concentrations meet I grade of lake water quality standard during non-storm period, but degraded up to II-III grade of lake water quality standard during storm period. The observed T-N concentrations always exceeded lake water quality standard. Therefore, T-P was identified as limiting chemical constituent for eutrophication of Juam Lake. T-P concentration of non-storm period also revealed that point source pollution is not serious in the watershed. Three year monitoring results showed that the observed T-N losses were $10.85\~18.88$ kg/ha and T-P losses were $0.028\~0.323$ kg/ha during six month (Mar. - Oct.), respectively. Major portion of runoff amount discharged by a few storm events a year and nutrient load showed apparent seasonal variation. Huge runoff amounts were generated by intense storms, which make application of water treatment or detention facilities ineffective. Monitoring results confirmed that water quality improvement by abating nonpoint source pollution in rural watershed of monsoon climate should be focused on source control. T-P losses from paddy field seemed to consist of significant amount of total load from study watershed. Therefore, management of drainage from paddy field is considered to be important for preventing algal blooming problem in Juam Lake.

Loading Characteristics and Environmental Changes in Closed Coastal Water (폐쇄성 해역의 오염부하 특성과 해역환경변화)

  • Lee Chan-Won;Kwon Young-Tack;Yang Ki-Sup;Jang Pung-Guk;Han Sung-Dae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.60-70
    • /
    • 1998
  • Masan Bay is a typical enclosed coastal sea and receving body of discharges from Masan city and Changwon city. A POTW(Publicly Owned Treatment Works) started operation from November 1993 when the population of drainage area increased abcent 1.0 million and the effluent from this Plant has being discharged to the enclosed sea where is located at 15km distance from inner Masan Bay. Thus the inflow pattern to Masan Bay has been changed. The main objective of this research is to evaluate the relationship between urban wastewater discharge and water qualify change in a typical coastal zone. It is necessary a) to evaluate the change of input loadings, b) to determine the effect on water quality changes, and c) to find the respective importance of improvement options that must be controlled in the wastewater treatment plant. It was concluded that the sea water quality has being adversely affected by the discharge of insufficiently treated urban wastewater and the nutrient removal in wastewater treatment was very important and urgent.

  • PDF

Estimation of the Pollutant Loads from Paddy Fields by Cultivation Practices Using a Non-point-source Model (비점원오염모델을 이용한 논의 영농방법별 오염부하량 예측)

  • Han, Kuk-Heon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.10-17
    • /
    • 2008
  • The objective of this study was to estimate the pollutant loads from paddy fields by cultivation practices using a non-point-sources models. One of them is CREAMS-PADDY model that was developed considering the water balance and mass balance of paddy fields. The CREAMS-PADDY model was applied to provide basic data to reduce runoff loadings under various scenarios such as various water management control and various fertilizer condition. The model was verified against T-N, T-P and runoff flow data collected during cropping periods at 2000. The model results agreed well with the measured data in verification. The results showed that the model could be used for estimating the runoff loadings from irrigated paddy fields by cultivation practices was possible. Comparison of simulated the standard height and the sluice management of T-N and T-P runoff loadings from paddy fields were +32.4%, +10.3% in 10 mm below the standard height, -29.2%, -35.9% in 20 mm above the standard height, 52.6%, 59.0% in 40 mm above the standard height, respectively. Comparison of simulated the standard fertilizer and the fertilizer control of T-N and T-P runoff loadings from paddy fields were -1.3%, -21.7%in reduction of conventional fertilizer 30%, -1.0%, -12.5% in reduction of standard fertilizer 30%, respectively. Therefore, reducing nonpoint-sources nutrient loading by reducing fertilization may not work well in the range of normal paddy rice farming practices, and instead it could be achieved by reducing surface drainage outflow.

Feasibility of Aquatic Plants (Eichhornia crassipes and Water dropwort) for Nutrients Removal (수생식물(부레옥잠 및 미나리)을 이용한 영양염류 제거에 관한 연구)

  • Choi, Don-Hyeok;Kang, Ho;Lee, Mi-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.141-148
    • /
    • 2010
  • Feasibility of floating aquatic plants (Eichhornia crassipes and Water dropwort) was investigated in order to control of sewage depending on various initial loading in a lab scale test. In addition, field test was conducted to assess the uptake rate of nutrient by E. crassipes. Lab-scale test applying primary domestic effluent operated at 4 day HRT shows that the highest uptake rates were 1.06 g N/$m^2{\cdot}day$ and 0.39 g P/$m^2{\cdot}day$ in the E. crassipes reactor. BOD removal efficiency in E. crassipes reactor was as high as 80% when the loading value was lower than 185 kg BOD/$ha{\cdot}day$. While 70 ~ 80% removal efficiency of BOD was achieved when the loading value was lower 80 kg BOD/$ha{\cdot}day$ at the W. Dropwort reactor. Experiment results show that E.crassipes has a higher nutrients removal efficiency than W. dropwort under high pollutant loading. Input loadings of TN and TP should not exceed to 10 kg TN/$ha{\cdot}day$ and 2.0 kg TP/$ha{\cdot}day$ respectively to provide a 50% TN and 80% TP removal efficiencies using E. crassipes. The field test demonstrated that an annual yield of E. crassipes mass was estimated as a fresh weight of 30.9 $m^3/ha{\cdot}yr$. E. crassipes grown in field pads absorbed 76.7 kg N/$ha{\cdot}yr$ and 13.4 kg P/$ha{\cdot}yr$ as a dry weight.

Laboratory Investigation into Factors Affecting Performance of Anaerobic Contact Process for Pear Processing Wastewater

  • Hur Joon Moo;Son Bu Soon;Jang Bong Ki;Park Jong An;Lee Jong Whoa;Kim Joon Hyun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.99-108
    • /
    • 1998
  • Results obtained from this research showed that the anaerobic contact process was applicable to pear waste with COD removal efficiencies of up to $95\%$ depending on conditions, provided ammonium and phosphate salts were added as well as other nutrients, present in the commercial fertilizer, Milorganite or in yeast extract. These latter materials were required in minimum concentrations of 5 and 1.5 g/L, respectively, in the feed independent of HRT and volatile solids loading rate, with part of the effect due to the mineral fraction. Digestion was satisfactory over the whole range of volatile solids loading rates and liquid retention time of 30 to 0.5 days tested, although treatment efficiency dropped off noticeably between 1 and 0.5 day liquid retention time because of poorer flocculation and separation of anaerobic bacteria. Settling of anaerobic bacteria including methane producing bacteria was related to settling of mixed liquor suspended solids only at 1 to 5 days liquid retention times, at other liquid retention times anaerobic microorganism settled markedly less efficiently than mixed liquor suspended solids. Further studies are being made to provide information of practical and basic interest. Data on the composition of the active fraction of yeast extract might solve many practical nutrient problems encountered with the anaerobic contact process and improve its economics. Further improvement in the flocculation and settling of anaerobic bacteria as well as other bacteria would improve overall performance and allow the use of shorter liquid retention times with dilute waste. Knowledge about the numbers of methane formers present would allow a degree of understanding and control of the process not presently attainable.

  • PDF

Chemical Indices of Soil Quality: Effects of Heavy Metal Additions

  • Yang, Jae-E.;Choi, Moon-Heon;Lee, Wi-Young;Kim, Jeong-Je;Jung, Yeong-Sang
    • Applied Biological Chemistry
    • /
    • v.41 no.8
    • /
    • pp.587-594
    • /
    • 1998
  • The objective of this research was to characterize effects of Cu or Cd additions on chemistry of soil quality indices, such as pH, EC, cation distribution and buffering capacity. Metals were added at rates ranging from 0 to 400 mg $kg^{-1}$ of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable fractions. Adsorption of the added metals released cations into soil solution causing increases of ionic strength of soil solution. At metal additions of $200{\sim}400\;mg\;kg^{-1}$, EC of soil solution increased to as much as $2{\sim}4\;m^{-1}$; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations than monovalent cations were exchanged by Cu or Cd adsorption. The nutrient buffering capacity of soils was decreased due to the metal adsorption and release of cations. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu $kg^{-1}$ addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

The Sidestream from WWTP; Its Characteristics and Effects on the Main Process (하수처리장(下水處理場)에서 반송수(返送水)의 성장(性狀)과 영향(影響))

  • Choi, Eui So;Lee, Ho Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.233-241
    • /
    • 1993
  • This study was conducted to characterise the sidestream from municipal wastewater treatment plants and its effects on the main treatment process. The flow rates and waste strengthes from each unit processes were measured and analysed, and finally determined its characteristics through the mass balance techniques. A laboratory scale completely mixed activated sludge was operated at $20^{\circ}C$ and fed in pulse with the sidestream to simulate the actual operating conditions. The study results indicated that the flow rates of sidestream ranged from 1.2 to 1.8 percent of the influent flow. However, the organic and nutrient loading rates could be increased to about 20 to 30 percent at an average, but 40 to 70 percent at a peak condition. It appears that the impurities from the sidestreams were not easily settled and resulted in lower primary efficiency. Consequently, it increased the organic loading rates to the aeration tank and the efficiencies were decreased at least about 10 percent at an average in comparison to the ordinary condition without the sidestream. With the peak condition, the efficiencies could not reach more than 80 percent for the organic removal and 50 percent for the nitrification.

  • PDF

Characteristics of Pollutant Loading into Streams from Flooded Paddies -On The Special Reference to Total Kjeldahl Nitorgen and Total phosphorous- (농경지로부터의 오염물질 유출부하특성 - 전Kjeldahl 질소 및 전인을 중심으로)

  • 홍성구;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.93-102
    • /
    • 1989
  • With an objective to provide basic information for the management and the prediction of eutrophication in lentic water Systems, total amount of Kjeldahl nitrogen(T-N) and phosphorous(T-P) from irrigated water and drained water from flooded paddies were investigated during the rice growing period of 1988. A 29.3 ha paddies near Jungnam-myun, HwaSung-gun, Gyungi Province, Korea was instrumented for measuring runoff and sampling irrigated water and drained water from paddies. The following conclusions may be drawn from the result of this study. 1.During 115 days of investigation, T-N load for paddies was 362.6kg and T-P 63.44kg.These would be converted to 12.4kg T-N/ha and 2.17kg T-P/ha, respectively. 2.The T-N and T-P loadings in different periods showed a significant difference. The 25% of T-N loading was drained soon after fertilization period and 60% was drained during the rainy season from July 5 to July 24. 3.Annual loadings from paddies could be calculated to 30kg T-N/ha/year and 52kg T-P/ha/year considering non-measurement periods. 4.After the rainy season, the nutrient loads from drained water showed much less than those from irrigated water, and it may be suggested that the paddies would act as a stabilization pond. 5.The average concentrations of nutrients at 0.9km downstream from investigated paddies were 2.02(T-N) mg/l and 0.52(T-P) mg/I, which were 1.82(T-N) mg/l and 0.056(T-P)mg/l lower than those of drained water from paddies.

  • PDF

Seasonal Variation in the Phytoplankton and Bacterial Fauna in the Mid to Lower Reaches of the Nakdong River (낙동강 중.하류에서 식물플랑크톤과 세균의 계절적 동태)

  • Park, Jae-Rim;Ha, Kyong;Son, Yeon-Ju;Ju, Gea-Jae
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.259-267
    • /
    • 2001
  • Investigations were carried out to observe the seasonal succession of phytoplankton, and viable counts of bacteria from the mid to lower reaches of Nakdong Fiver. An intensive monitoring was conducted from May to December 1999 biweekly at 6 sites in a main channel and 3 tributaries. Although there are several sites with high nutrient loading from the basin, all of study sites showed mesotrophic states owing to high discharge(June~September). Relatively low algal biomass and CFUs(mean of chi. a, $12.3{\pm}$11.5 $\mu\textrm{g}${\el}l$, CFUs : 1.8${\times}10^7$) were observed during the rainy season. The diatom population was dominant(over 85% of total community) year-long with peaks(Stephanodiscus hantzchii) in the fall and winter. Dominance of blue-green algal groups during the summer was not observed in the summer. Microorganisms peaked in the summer and fall(June~September), affected mainly by the inputs of phytoplankton and nutrients. Biomass of phytoplankton and CFU counts were higher in the Kumho River than other tributaries and main channel.

  • PDF