• 제목/요약/키워드: numerical weather model

검색결과 334건 처리시간 0.021초

수치모델에서 레이더 자료동화가 강수 예측에 미치는 영향 (The Effect of Radar Data Assimilation in Numerical Models on Precipitation Forecasting)

  • 이지원;민기홍
    • 대기
    • /
    • 제33권5호
    • /
    • pp.457-475
    • /
    • 2023
  • Accurately predicting localized heavy rainfall is challenging without high-resolution mesoscale cloud information in the numerical model's initial field, as precipitation intensity and amount vary significantly across regions. In the Korean Peninsula, the radar observation network covers the entire country, providing high-resolution data on hydrometeors which is suitable for data assimilation (DA). During the pre-processing stage, radar reflectivity is classified into hydrometeors (e.g., rain, snow, graupel) using the background temperature field. The mixing ratio of each hydrometeor is converted and inputted into a numerical model. Moreover, assimilating saturated water vapor mixing ratio and decomposing radar radial velocity into a three-dimensional wind vector improves the atmospheric dynamic field. This study presents radar DA experiments using a numerical prediction model to enhance the wind, water vapor, and hydrometeor mixing ratio information. The impact of radar DA on precipitation prediction is analyzed separately for each radar component. Assimilating radial velocity improves the dynamic field, while assimilating hydrometeor mixing ratio reduces the spin-up period in cloud microphysical processes, simulating initial precipitation growth. Assimilating water vapor mixing ratio further captures a moist atmospheric environment, maintaining continuous growth of hydrometeors, resulting in concentrated heavy rainfall. Overall, the radar DA experiment showed a 32.78% improvement in precipitation forecast accuracy compared to experiments without DA across four cases. Further research in related fields is necessary to improve predictions of mesoscale heavy rainfall in South Korea, mitigating its impact on human life and property.

Experimental and numerical study on motion responses of modular floating structures with connectors in waves

  • Dong-Hee Choi;Jae-Min Jeon;Min-Ju Maeng;Jeong-Hyeon Kim;Bo Woo Nam
    • Ocean Systems Engineering
    • /
    • 제14권3호
    • /
    • pp.277-299
    • /
    • 2024
  • In this study, the wave-induced motion responses of modular floating structures (MFS) was investigated through a series of experiments in a two-dimensional wave tank. A 1:63 scale model test was conducted using a 1-by-2 modular floating structure consisting of two modules and connectors. Two different types of connectors were considered: a pitch-free hinge and rigid connector. The numerical analysis was performed based on the higher-order boundary element method (HOBEM) and wave Green function with potential flow theory. First, the heave and pitch RAOs of the modules from the regular wave tests were directly compared with numerical analysis results. Next, the motion spectra and their statistical values from the irregular wave tests were compared with the numerical analysis results. The study revealed that the sheltering effect of the weather side module led to a reduction in motion of the lee side module. The numerical analysis showed good agreement with the experimental data, demonstrating the validity of the numerical method. Additionally, the rigid connector, which strongly constrain all six degrees of freedom, significantly reduce pitch motion, making the modules behave as a single rigid body.

봄철 서해안 해무의 수치예보 (Numerical forecasting of sea fog at West sea in spring)

  • 한경근;김영철
    • 한국항공운항학회지
    • /
    • 제14권4호
    • /
    • pp.94-100
    • /
    • 2006
  • The purpose of this case study is to determine the possibility of Numerical Forecasting of sea fog at West Sea in spring time. For practical method of analyzing the data collected from 24th to 26th March 2003, Numerical Weather Prediction model MM5(Mesoscale Model Version 5) and synoptic field study using synoptic chart, upper level chart, and sea surface temperature were employed. The results of synoptic field analysis summarized that sea fog at West sea in spring is intensified by the inflow of the warm flow from west or southwest, low sea surface temperature to increase the temperature difference between air and sea surface, and inversion layer to disturb the disperse. It appears that the possibility of sea fog forecasting by MM5, in view of the result that the MM5 output is similar to the synoptic fields analysis.

  • PDF

제주 실시간 풍력발전 출력 예측시스템 개발을 위한 개념설계 연구 (A study on the Conceptual Design for the Real-time wind Power Prediction System in Jeju)

  • 이영미;유명숙;최홍석;김용준;서영준
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2202-2211
    • /
    • 2010
  • The wind power prediction system is composed of a meteorological forecasting module, calculation module of wind power output and HMI(Human Machine Interface) visualization system. The final information from this system is a short-term (6hr ahead) and mid-term (48hr ahead) wind power prediction value. The meteorological forecasting module for wind speed and direction forecasting is a combination of physical and statistical model. In this system, the WRF(Weather Research and Forecasting) model, which is a three-dimensional numerical weather model, is used as the physical model and the GFS(Global Forecasting System) models is used for initial condition forecasting. The 100m resolution terrain data is used to improve the accuracy of this system. In addition, optimization of the physical model carried out using historic weather data in Jeju. The mid-term prediction value from the physical model is used in the statistical method for a short-term prediction. The final power prediction is calculated using an optimal adjustment between the currently observed data and data predicted from the power curve model. The final wind power prediction value is provided to customs using a HMI visualization system. The aim of this study is to further improve the accuracy of this prediction system and develop a practical system for power system operation and the energy market in the Smart-Grid.

Improvement of WRF forecast meteorological data by Model Output Statistics using linear, polynomial and scaling regression methods

  • Jabbari, Aida;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.147-147
    • /
    • 2019
  • The Numerical Weather Prediction (NWP) models determine the future state of the weather by forcing current weather conditions into the atmospheric models. The NWP models approximate mathematically the physical dynamics by nonlinear differential equations; however these approximations include uncertainties. The errors of the NWP estimations can be related to the initial and boundary conditions and model parameterization. Development in the meteorological forecast models did not solve the issues related to the inevitable biases. In spite of the efforts to incorporate all sources of uncertainty into the forecast, and regardless of the methodologies applied to generate the forecast ensembles, they are still subject to errors and systematic biases. The statistical post-processing increases the accuracy of the forecast data by decreasing the errors. Error prediction of the NWP models which is updating the NWP model outputs or model output statistics is one of the ways to improve the model forecast. The regression methods (including linear, polynomial and scaling regression) are applied to the present study to improve the real time forecast skill. Such post-processing consists of two main steps. Firstly, regression is built between forecast and measurement, available during a certain training period, and secondly, the regression is applied to new forecasts. In this study, the WRF real-time forecast data, in comparison with the observed data, had systematic biases; the errors related to the NWP model forecasts were reflected in the underestimation of the meteorological data forecast by the WRF model. The promising results will indicate that the post-processing techniques applied in this study improved the meteorological forecast data provided by WRF model. A comparison between various bias correction methods will show the strength and weakness of the each methods.

  • PDF

단기 앙상블 예보에서 모형의 불확실성 표현: 태풍 루사 (Representation of Model Uncertainty in the Short-Range Ensemble Prediction for Typhoon Rusa (2002))

  • 김세나;임규호
    • 대기
    • /
    • 제25권1호
    • /
    • pp.1-18
    • /
    • 2015
  • The most objective way to overcome the limitation of numerical weather prediction model is to represent the uncertainty of prediction by introducing probabilistic forecast. The uncertainty of the numerical weather prediction system developed due to the parameterization of unresolved scale motions and the energy losses from the sub-scale physical processes. In this study, we focused on the growth of model errors. We performed ensemble forecast to represent model uncertainty. By employing the multi-physics scheme (PHYS) and the stochastic kinetic energy backscatter scheme (SKEBS) in simulating typhoon Rusa (2002), we assessed the performance level of the two schemes. The both schemes produced better results than the control run did in the ensemble mean forecast of the track. The results using PHYS improved by 28% and those based on SKEBS did by 7%. Both of the ensemble mean errors of the both schemes increased rapidly at the forecast time 84 hrs. The both ensemble spreads increased gradually during integration. The results based on SKEBS represented model errors very well during the forecast time of 96 hrs. After the period, it produced an under-dispersive pattern. The simulation based on PHYS overestimated the ensemble mean error during integration and represented the real situation well at the forecast time of 120 hrs. The displacement speed of the typhoon based on PHYS was closest to the best track, especially after landfall. In the sensitivity tests of the model uncertainty of SKEBS, ensemble mean forecast was sensitive to the physics parameterization. By adjusting the forcing parameter of SKEBS, the default experiment improved in the ensemble spread, ensemble mean errors, and moving speed.

수치예보모형을 이용한 역학적 규모축소 기법을 통한 농업기후지수 모사 (A Simulation of Agro-Climate Index over the Korean Peninsula Using Dynamical Downscaling with a Numerical Weather Prediction Model)

  • 안중배;허지나;심교문
    • 한국농림기상학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2010
  • 본 연구에서는 기상예측 모형을 이용하여 상세한 농업기후지수를 모사하고자 하였다. 이를 위해서 NCEP/NCAR 재분석 자료를 지역기후모형인 WRF의 초기 및 경계조건으로 하여 2002년 3월부터 7년간 상세한 기후 자료를 생산하고, 이렇게 구한 기후 자료를 통계적 보정을 거쳐 계통적 오차를 제거함으로써 그 기간의 기후를 재현하였으며 이를 이용하여 상세한 농업기후지수로 생산하였다. 수치 실험을 통해 생산된 상세 지역기후자료는 대순환 모형이 모사할 수 없는 남한의 복잡한 지형적 구조와 전체적인 관측 공간 패턴을 모사하였다. 통계적 보정은 모형결과가 관측에 비해 과소모사 되던 경향을 제거함으로써 보다 상세하고 관측에 가까운 시 공적 기후자료의 생산을 가능하게 하였다. 이렇게 모사된 기후 자료를 이용하여 식물온도 출 현초일, 작물온도 출현초일, 벼 이앙기의 저온 출현율, 종상일 등의 농업기후지수들에 대한 상세한 분포를 생산하였다. 보정 전 모형 결과에서는 계통적 오차인 모형의 기온 과소모사 경향에 의해 전반적인 유효온도와 종상일이 늦게 출현하였으며, 저온 출현율의 빈도가 높게 나타났다. 보정 후 모형 결과에서는 계통적 오차의 보정에 의해 유효온도 $10^{\circ}C$ 출현일을 제외한 유효 온도 출현일과 종상일이 앞당겨졌으며, 저온 출현일 빈도가 감소하였다. 보정 후 모형 결과에서 유도된 유 효온도 $10^{\circ}C$ 출현일은 보정 전 모형결과보다 3일 늦게 모사되고 있으나 보정 전 모형 결과에서 모사하지 못한 지역적 특징을 모사하고 있어 국지적으로 나타나는 작물온도 출현초일의 세부적인 패턴을 이해하는데 유용한 결과라고 판단된다. 모형의 결과로 유도된 농업기후지수는 복잡한 지역적 편차를 가지면서 정량적 정성적으로 관측에서 유도한 결과와 유사하게 나타났다. 반면 통계적 보정을 적용하여도 중부 논농사 지대의 작물온도 출현초일은 여전히 잘 모사되지 못하고 있는데 이는 모형의 결과가 계통적 오차 이외에도 또 다른 불확실성에 의한 문제를 내제하고 있음을 보여주는 결과이다. 향후 물리적 모수화 과정의 개선, 역학적 규모축소방법의 최적화 그리고 통계적 보정 방법의 다양한 적용을 통해 보다 향상된 농업기후지수를 생산할 수 있을 것으로 판단된다. 이러한 실험 결과는 농업 경영자들에게 상세 농업기후지수 분포의 이해를 도와줄 뿐만 아니라 본 연구의 실험 방식이 농업 예측에 활용될 경우 장기 예측 및 기후변화에 따른 예측을 위한 정보에 긴요하게 사용될 수 있을 것으로 생각된다.

WRF / ENVI-met 통합모형을 적용한 도시 공원의 경계 조건 및 열역학적 영향 분석 연구 (Study on the Impacts of Lateral Boundary Conditions and Thermodynamics of Urban Park using Coupling System of WRF / ENVI-met)

  • 이태진;유정우;이화운;원효성;이순환
    • 한국환경과학회지
    • /
    • 제26권4호
    • /
    • pp.493-507
    • /
    • 2017
  • Since the late 20th century, the urbanization in Korea has been rapidly increasing, especially in major cities like Seoul, as a result of industrialization. One of the aspects of urbanization is coating the surfaces with impervious concrete or asphalt that water cannot penetrate. In addition, various urban, such as urban heat islands, which also have a great impact on the urban environment, occur within the cities. Therefore, the urban environment is gradually becoming hot and dry, and the need for more urban parks to compensate for these negative impacts is growing. Thus, several numerical studies have been conducted to assess these problems using coupled Numerical Weather Prediction (NWP) and Computational Fluid Dynamics (CFD). In this study, an experiment was conducted to determine the accuracy of the area of the input field using Weather Research and Forecasting (WRF) model, and applying the more accurate input field to a numerical simulation using ENVI-met, in order to investigate the effect of urban parks on the thermal comfort. The results showed that an input field with a larger area is more accurate than that with a smaller area, because the surrounding terrain and cities are considered in details in the experiment with the larger area. Subsequently, the more accurate input field was used in ENVI-met, and the results of this simulation showed that the presence of the urban park increased the thermal comfort and improved the humidity conditions.

현업 국지모델기반 2018년 여름철 기상 1호 특별 고층관측자료의 관측 민감도 실험 (Observing Sensitivity Experiment Based on Convective Scale Model for Upper-air Observation Data on GISANG 1 (KMA Research Vessel) in Summer 2018)

  • 최다영;황윤정;이용희
    • 대기
    • /
    • 제30권1호
    • /
    • pp.17-30
    • /
    • 2020
  • KMA performed the special observation program to provide information about severe weather and to monitor typhoon PRAPIROON using the ship which called the Gisang 1 from 29 June 2018 to 4 July 2018 (UTC). For this period, upper-air was observed 21 times with 6 hour intervals using rawinsonde in the Gisang 1. We investigated the impact of upper-air observation data from the Gisang 1 on the performance of the operational convective scale model (we called LDAPS). We conducted two experiments that used all observation data including upper-air observation data from the Gisang 1 (OPER) and without it (EXPR). For a typhoon PRAPIROON case, track forecast error of OPER was lower than EXPR until forecast 24 hours. The intensity forecast error of OPER for minimum sea level pressure was lower than EXPR until forecast 12 hours. The intensity forecast error of OPER for maximum wind speed was mostly lower than EXPR until forecast 30 hours. OPER showed good performance for typhoon forecast compared with EXPR at the early lead time. Two precipitation cases occurred in the south of the Korean peninsula due to the impact of Changma on 1 July and typhoon on 3 July. The location of main precipitation band predicted from OPER was closer to observations. As assimilating upper-air data observed in the Gisang 1 to model, it showed positive results in typhoon and precipitation cases.

MLR 및 SVR 기반 선형과 비선형회귀분석의 비교 - 풍속 예측 보정 (Comparison of MLR and SVR Based Linear and Nonlinear Regressions - Compensation for Wind Speed Prediction)

  • 김준봉;오승철;서기성
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.851-856
    • /
    • 2016
  • Wind speed is heavily fluctuated and quite local than other weather elements. It is difficult to improve the accuracy of prediction only in a numerical prediction model. An MOS (Model Output Statistics) technique is used to correct the systematic errors of the model using a statistical data analysis. The Most of previous MOS has used a linear regression model for weather prediction, but it is hard to manage an irregular nature of prediction of wind speed. In order to solve the problem, a nonlinear regression method using SVR (Support Vector Regression) is introduced for a development of MOS for wind speed prediction. Experiments are performed for KLAPS (Korea Local Analysis and Prediction System) re-analysis data from 2007 to 2013 year for Jeju Island and Busan area in South Korea. The MLR and SVR based linear and nonlinear methods are compared to each other for prediction accuracy of wind speed. Also, the comparison experiments are executed for the variation in the number of UM elements.