DOI QR코드

DOI QR Code

Study on the Impacts of Lateral Boundary Conditions and Thermodynamics of Urban Park using Coupling System of WRF / ENVI-met

WRF / ENVI-met 통합모형을 적용한 도시 공원의 경계 조건 및 열역학적 영향 분석 연구

  • Lee, Tae-Jin (Division of Earth Environmental System, Pusan National University) ;
  • Yoo, Jung-Woo (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Hwawoon (Division of Earth Environmental System, Pusan National University) ;
  • Won, Hyo-sung (Korea Meterological Administration) ;
  • Lee, Soon-Hwan (Department of Earth Science Education, Pusan National University)
  • 이태진 (부산대학교 지구환경시스템학부) ;
  • 유정우 (부산대학교 지구환경시스템학부) ;
  • 이화운 (부산대학교 지구환경시스템학부) ;
  • 원효성 (기상청) ;
  • 이순환 (부산대학교 지구과학교육과)
  • Received : 2017.02.23
  • Accepted : 2017.04.13
  • Published : 2017.04.30

Abstract

Since the late 20th century, the urbanization in Korea has been rapidly increasing, especially in major cities like Seoul, as a result of industrialization. One of the aspects of urbanization is coating the surfaces with impervious concrete or asphalt that water cannot penetrate. In addition, various urban, such as urban heat islands, which also have a great impact on the urban environment, occur within the cities. Therefore, the urban environment is gradually becoming hot and dry, and the need for more urban parks to compensate for these negative impacts is growing. Thus, several numerical studies have been conducted to assess these problems using coupled Numerical Weather Prediction (NWP) and Computational Fluid Dynamics (CFD). In this study, an experiment was conducted to determine the accuracy of the area of the input field using Weather Research and Forecasting (WRF) model, and applying the more accurate input field to a numerical simulation using ENVI-met, in order to investigate the effect of urban parks on the thermal comfort. The results showed that an input field with a larger area is more accurate than that with a smaller area, because the surrounding terrain and cities are considered in details in the experiment with the larger area. Subsequently, the more accurate input field was used in ENVI-met, and the results of this simulation showed that the presence of the urban park increased the thermal comfort and improved the humidity conditions.

Keywords

References

  1. Baik, J. J., Kim, J. J., Fernando, H. J. S., 2003, A CFD model for simulating urban flow and dispersion, J. Appl. Meteorol. Clim., 42(11), 1636-1648. https://doi.org/10.1175/1520-0450(2003)042<1636:ACMFSU>2.0.CO;2
  2. Baik, J. J., Park, S. B., Kim, J. J., 2009, Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model, J. Appl. Meteorol. Clim., 48(8), 1667-1681. https://doi.org/10.1175/2009JAMC2066.1
  3. Chen, F., Kusaka, H., Tewari, M., Bao, J. W., Hirakuchi, H., 2004, Utilizing the coupled WRF/LSM/Urban modeling system with detailed urban classification to simulate the urban heat island phenomena over the greater Houston area, Fifth Conference on Urban Environment, American Meteorological Society, Vancouver, Canada.
  4. Choi, H.-W., Kim, D.-Y., Kim, J.-J., Kim, K.-Y., Woo, J.-H., 2012, Study on dispersion characteristics for fire scenarios in an urban area using a CFD-WRF coupled model, Atmosphere, 22(1), 47-55. https://doi.org/10.14191/Atmos.2012.22.1.047
  5. Conry, P., Sharma, A., Potosnak, M. J., Leo, L. S., Bensman, E., Hellmann, J. J., Fernando, H. J. S., 2015, Chicago's heat island and climate change: Bridging the scales via dynamical downscaling, J. Appl. Meteorol. Clim., 54, 1430-1448. https://doi.org/10.1175/JAMC-D-14-0241.1
  6. Fanger, P. O., 1973, Assessment of man's thermal comfort in practice, Br. J. Ind. Med., 30, 313-324.
  7. Hamada, S., Ohta, T., 2010, Seasonal variations in the cooling effect of urban green areas on surrounding urban areas, Urban For. Urban Greening, 9, 15-24. https://doi.org/10.1016/j.ufug.2009.10.002
  8. Kusaka, H., Kondo, H., Kikegawa, Y., Kimura, F., 2001, A Simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models, Bound.-Lay. Meteorol., 101(3), 329-358. https://doi.org/10.1023/A:1019207923078
  9. Kwon, Y. A., 2002, The influence of urban green areas on ambient air temperature in Seoul, Ph. D. Dissertation, Konkuk University, Seoul.
  10. Landsberg, H. E., 1981, The urban climate, New York: Academic Press.
  11. Lee, J., Lee, Y.-G., Kim, B.-J., 2016, Analysis of the thermal environment around an urban green area in Seoul, Korea using Climate Analysis Seoul (CAS), Atmosphere, 26(3), 413-421. https://doi.org/10.14191/Atmos.2016.26.3.413
  12. Lee, S. H., 2011, A Numerical study on the characteristics of high resolution wind resource in mountainous areas using computational fluid dynamic analysis, J. Korean Earth Sci. Soc., 32(1), 46-56. https://doi.org/10.5467/JKESS.2011.32.1.46
  13. Lee, S. H., Ahn, J.-S., Kim, S.-W., Kim, H.-D., 2010, Multiple albedo variation caused by the shadow effect of urban building and its impacts on the urban surface heat budget, J. Korean Earth Sci. Soc., 37(7), 738-748.
  14. Lee, T. J., Lee, S. H., Lee, H. W., 2016, A Study of the characteristics of input boundary conditions for the prediction of urban air flow based on fluid dynamics, J. Environ. Sci., 25(7), 1017-1028.
  15. Miao, Y. C., Liu, S. H., Chen, B. C., Zhang, B. H., Wang, S., Li, S. Y., 2013, Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model, Adv. Atmos. Sci., 30(6), 1663-1678. https://doi.org/10.1007/s00376-013-2234-9
  16. Miao, Y. C., Liu, S. H., Zheng, H., Zheng, Y. J., Chen, B. C., Wang, S., 2014, A Multi-scale urban atmospheric dispersion model for emergency management, Adv. Atmos. Sci., 31(6), 1353-1365. https://doi.org/10.1007/s00376-014-3254-9
  17. Myeong, S., 2010, A Preliminary analysis of the impact of urban green spaces on the urban heat island effect using a temperature map, Kor. J. Remote Sens., 26(6), 675-680.
  18. Oke, T. R., 1982, The energetic basis of the urban heat island, Q. J. R. Meteorol. Soc., 108, 1-24.
  19. Spronken-Smith, R. A., Oke, T. R., 1999, Scale modeling of nocturnal cooling in urban parks, Bound.-Layer Meteorol., 93, 287-312. https://doi.org/10.1023/A:1002001408973
  20. Tewari, M., Kusaka, H., Chen, F., Corirer, W. J., Kim, S., Wyszogrobdzki, A. A., Warner, T. T., 2010, Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion, Atmos. Res., 96(4), 656-664. https://doi.org/10.1016/j.atmosres.2010.01.006
  21. Winston, T. L. C., Ronald, L. P., Chris, A. M., Anthony, J. B., 2011, Observing and modeling the nocturnal park cool island of an arid city: Horizontal and vertical impacts, Theor. Appl. Climatol., 103, 197-211. https://doi.org/10.1007/s00704-010-0293-8
  22. Yuan, F., Bauer, M. E., 2007, Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in landsat imagery, Remote Sens. Environ., 106, 375-386. https://doi.org/10.1016/j.rse.2006.09.003