• 제목/요약/키워드: numerical verification

검색결과 854건 처리시간 0.031초

Solution verification procedures for modeling and simulation of fully coupled porous media: static and dynamic behavior

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • 제4권1호
    • /
    • pp.67-98
    • /
    • 2015
  • Numerical prediction of dynamic behavior of fully coupled saturated porous media is of great importance in many engineering problems. Specifically, static and dynamic response of soils - porous media with pores filled with fluid, such as air, water, etc. - can only be modeled properly using fully coupled approaches. Modeling and simulation of static and dynamic behavior of soils require significant Verification and Validation (V&V) procedures in order to build credibility and increase confidence in numerical results. By definition, Verification is essentially a mathematics issue and it provides evidence that the model is solved correctly, while Validation, being a physics issue, provides evidence that the right model is solved. This paper focuses on Verification procedure for fully coupled modeling and simulation of porous media. Therefore, a complete Solution Verification suite has been developed consisting of analytical solutions for both static and dynamic problems of porous media, in time domain. Verification for fully coupled modeling and simulation of porous media has been performed through comparison of the numerical solutions with the analytical ones. Modeling and simulation is based on the so called, u-p-U formulation. Of particular interest are numerical dispersion effects which determine the level of numerical accuracy. These effects are investigated in detail, in an effort to suggest a compromise between numerical error and computational cost.

확인코어공이 현장타설말뚝의 선단지지력에 미치는 영향 (Effect of verification core hole on tip capacity)

  • 윤희정
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.435-441
    • /
    • 2010
  • In this study, numerical simulations were carried out to investigate the effect of verification core hole on the shaft tip capacity. The verification core extreted at shaft tip may deteriorate the shaft tip capacity when the clay shales (Taylor Marl) surrounding the shaft degrades and the empty core hole remains unfilled. Series of finite element analyses were conducted using Mohr-Coulomb model with total stress material parameters that were obtained from laboratory testing. The numerical analyses indicate that the shaft tip capacity does not decrease for most cases, and the maximum reduction does not exceed 5%.

  • PDF

A PRIORI ERROR ESTIMATES FOR THE FINITE ELEMENT APPROXIMATION OF AN OBSTACLE PROBLEM

  • Ryoo, Cheon-Seoung
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.175-181
    • /
    • 2000
  • The purpose of this to measure, with explicit constants as small as possible, a priori error bounds for approximation by picewise polynomials. These constants play an important role in the numerical verification method of solutions for obstacle problems by using finite element methods .

SYNOP 지상관측자료를 활용한 수치모델 전구 예측성 검증 (Verification of the Global Numerical Weather Prediction Using SYNOP Surface Observation Data)

  • 이은희;최인진;김기병;강전호;이주원;이은정;설경희
    • 대기
    • /
    • 제27권2호
    • /
    • pp.235-249
    • /
    • 2017
  • This paper describes methodology verifying near-surface predictability of numerical weather prediction models against the surface synoptic weather station network (SYNOP) observation. As verification variables, temperature, wind, humidity-related variables, total cloud cover, and surface pressure are included in this tool. Quality controlled SYNOP observation through the pre-processing for data assimilation is used. To consider the difference of topographic height between observation and model grid points, vertical inter/extrapolation is applied for temperature, humidity, and surface pressure verification. This verification algorithm is applied for verifying medium-range forecasts by a global forecasting model developed by Korea Institute of Atmospheric Prediction Systems to measure the near-surface predictability of the model and to evaluate the capability of the developed verification tool. It is found that the verification of near-surface prediction against SYNOP observation shows consistency with verification of upper atmosphere against global radiosonde observation, suggesting reliability of those data and demonstrating importance of verification against in-situ measurement as well. Although verifying modeled total cloud cover with observation might have limitation due to the different definition between the model and observation, it is also capable to diagnose the relative bias of model predictability such as a regional reliability and diurnal evolution of the bias.

현장정재하시험을 이용한 말뚝 거동특성 수치해석 예측기법의 신뢰성 검증 (Reliability Verification of Numerical Prediction Method on Pile Behaviour Characteristics using Field Static Loading Test)

  • 남호성;백승철
    • 한국지반환경공학회 논문집
    • /
    • 제18권9호
    • /
    • pp.11-18
    • /
    • 2017
  • 수치해석기법을 이용한 말뚝의 거동특성 예측방법은 정재하시험비가 고가이기 때문에 공사 전 말뚝의 거동을 예측할 수 있다는 장점으로 설계단계에서 널리 이용되고 있지만 그 신뢰성에 대한 연구는 부족한 실정이다. 본 연구에서는 실제 현장에서 말뚝의 거동과 수치해석으로 예측한 말뚝의 거동을 비교함으로써 수치해석 기법의 신뢰성을 검증하였다. 지반과 말뚝의 상호작용에 의한 말뚝의 거동을 정확하게 파악하기 위하여 정재하시험이 수행되는 지반에서 시추조사, 현장원위치시험 등을 통해 지반특성을 확인하였고, 실규모 정재하시험을 수행하여 말뚝의 거동특성을 분석하였다. 정재하시험이 수행된 방식과 동일하게 수치해석을 모사하여 재하시험과 동일한 하중단계에서 말뚝의 거동을 수치해석으로 모사하여 현장시험 결과와 비교함으로써 수치해석 기법의 신뢰성을 검증하였다.

A NEW EXPONENTIAL DIRECTED DIVERGENCE INFORMATION MEASURE

  • JAIN, K.C.;CHHABRA, PRAPHULL
    • Journal of applied mathematics & informatics
    • /
    • 제34권3_4호
    • /
    • pp.295-308
    • /
    • 2016
  • Depending upon the nature of the problem, different divergence measures are suitable. So it is always desirable to develop a new divergence measure. In the present work, new information divergence measure, which is exponential in nature, is introduced and characterized. Bounds of this new measure are obtained in terms of various symmetric and non- symmetric measures together with numerical verification by using two discrete distributions: Binomial and Poisson. Fuzzy information measure and Useful information measure corresponding to new exponential divergence measure are also introduced.

가속을 갖는 이동질량에 의한 외팔보의 동적응답에 관한 실험적 검증 (Experimental Verification on Dynamic Responses of a Cantilevered Beam under a Moving Mass with Accelerations)

  • 김희중;류봉조;김효준;윤충섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.307-310
    • /
    • 2004
  • The paper presents the numerical and experimental results for the dynamic response vibration of a cantilevered beam subjected to a moving mass with variable speeds. Governing equations of motion under a moving mass were derived by Galerkin's mode summation method taking into account the effects of all forces due to moving mass, and the numerical results were calculated by Runge-Kutta integration method. The effects of the speed, acceleration and the magnitude of the moving mass on the response of the beam are fully investigated. In order to verify numerical results, some experiments were conducted, and the numerical results have a little difference with the experimental ones.

  • PDF

역T형 옹벽의 지진시 거동특성 Part I : 수치해석 모델링 기법의 검증 (Seismic Behavior of Inverted T-type Wall under Earthquake Part I : Verification of the Numerical Modeling Techniques)

  • 이진선
    • 한국지진공학회논문집
    • /
    • 제20권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Permanent deformation plays a key role in performance based earthquake resistant design. In order to estimate permanent deformation after earthquake, it is essential to secure reliable response history analysis(RHA) as well as earthquake scenario. This study focuses on permanent deformation of an inverted T-type wall under earthquake. The study is composed of two separate parts. The first one is on the verification of RHA and the second one is on an effect of input earthquake motion. The former is discussed in this paper and the latter in the companion paper. The verification is conducted via geotechnical dynamic centrifuge test in prototype scale. Response of wall stem, ground motions behind the wall obtained from RHA matched pretty well with physical test performed under centrifugal acceleration of 50g. The rigorously verified RHA is used for parametric study to investigate an effect of input earthquake motion selection in the companion paper.

DEVELOPMENT AND PRELIMINARY ASSESSMENT OF A THREE-DIMENSIONAL THERMAL HYDRAULICS CODE, CUPID

  • Jeong, Jae-Jun;Yoon, Han-Young;Park, Ik-Kyu;Cho, Hyoung-Kyu;Lee, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.279-296
    • /
    • 2010
  • For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations were solved over unstructured grids, which are very useful for the analysis of flows in complicated geometries. To obtain numerical solutions, the semi-implicit numerical method for the REALP5 code was modified for an application to unstructured grids, and it has been further improved for enhanced accuracy and fast running. For the verification of the CUPID code, a set of conceptual problems and experiments were simulated. This paper presents the flow model, the numerical solution method, and the results of the preliminary assessment.