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A NEW EXPONENTIAL DIRECTED DIVERGENCE

INFORMATION MEASURE

K.C. JAIN∗, PRAPHULL CHHABRA

Abstract. Depending upon the nature of the problem, different diver-

gence measures are suitable. So it is always desirable to develop a new
divergence measure. In the present work, new information divergence
measure, which is exponential in nature, is introduced and characterized.
Bounds of this new measure are obtained in terms of various symmetric

and non- symmetric measures together with numerical verification by us-
ing two discrete distributions: Binomial and Poisson. Fuzzy information
measure and Useful information measure corresponding to new exponential

divergence measure are also introduced.
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1. Introduction

Divergence measures are basically measures of distance between two probabil-
ity distributions or compare two probability distributions. Divergence measure
must increase as probability distributions move apart.
Divergence measures have been demonstrated very useful in a variety of dis-
ciplines such as Bayesian model validation [50], quantum information theory
[33, 35], model validation [4], robust detection [39], economics and political sci-
ence [48, 49], biology [38], analysis of contingency tables [18], approximation of
probability distributions [11, 29], signal processing [27, 28], pattern recognition
[2, 7, 10, 26], color image segmentation [34], 3D image segmentation and word
alignment [47], cost- sensitive classification for medical diagnosis [42], magnetic
resonance image analysis [51] etc.
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Also we can use divergence measures in fuzzy mathematics as fuzzy directed di-
vergences and fuzzy entropies [1, 20, 25], which are very useful to find the amount
of average ambiguity or difficulty in making a decision whether an element be-
longs to a set or not. Fuzzy information measures have recently found appli-
cations to fuzzy aircraft control, fuzzy traffic control, engineering, medicines,
computer science, management and decision making etc. Divergence measures
are also very useful to find the utility of an event [6, 44], i.e., an event is how
much useful compare to other event.
Without essential loss of insight, we have restricted ourselves to discrete prob-
ability distributions, so let Γn = {P = (p1, p2, p3, ..., pn) : pi > 0,

∑n
i=1 pi = 1},

n ≥ 2 be the set of all complete finite discrete probability distributions. The re-
striction here to discrete distributions is only for convenience, similar results hold
for continuous distributions as well. If we take pi ≥ 0 for some i = 1, 2, 3..., n,
then we have to suppose that 0f (0) = 0f

(
0
0

)
= 0.

Some generalized f - information divergence measures had been introduced, char-
acterized and applied in variety of fields, such as: Csiszar’s f - divergence [12, 13],
Bregman’s f - divergence [8], Burbea- Rao’s f - divergence [9], Renyi’s like f - di-
vergence [40], M - divergence [41], Jain- Saraswat f - divergence [22] etc.
Besides these, The f - divergence measure [3] with respect to two functions (f, g)
is also introduced, which is

d (P,Q) = g

[
n∑

i=1

pif

(
qi
pi

)]
,

where g is an increasing function on R and f is real, continuous, and convex
function on R+. We obtain many standard divergence measures by suitably
defining the function f and g, such as: for f (t) = −t1−r, g (t) = − log (−t) , 0 ≤
r ≤ 1, we get d (P,Q) = − log

(∑n
i=1 p

r
i q

1−r
i

)
called Chernoff Coefficient and

at r = 1
2 , we obtain − log

(∑n
i=1

√
piqi

)
well known the Bhattacharyya distance

[5]. Similarly for f (t) =
∣∣∣1− t

1
r

∣∣∣r , r ≥ 1, g (t) = t
1
r , we obtain d (P,Q) =(∑n

i=1

∣∣∣p 1
r
i − q

1
r
i

∣∣∣r) 1
r

so called Generalized Matusita distance and at r = 1, we

obtain
∑n

i=1 |pi − qi| the well known Variational distance or l1 distance [30].
Csiszar’s f - divergence is widely used due to its compact nature, which is given
by

Cf (P,Q) =
n∑

i=1

qif

(
pi
qi

)
, (1)

where f : (0,∞) → R (set of real no.) is real, continuous, and convex function
and P = (p1, p2, ..., pn) , Q = (q1, q2, ..., qn) ∈ Γn, where pi and qi are probabili-
ties.
Cf (P,Q) is a natural distance measure from a true probability distribution P
to an arbitrary probability distribution Q. Typically P represents observations
or a precise calculated probability distribution, whereas Q represents a model, a
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description or an approximation of P . Fundamental properties of Cf (P,Q) can
be seen in literature [36], in detail.

Remark 1.1. For comparing multiple number of discrete probability distribu-
tions, following will be the Csiszar’s generalized f - divergence [15]

Cn
f (P1, ..., Pn, Q1, ..., Qn) =

m∑
i=1

...
m∑
i=1

qi1...qinf

(
pi1

qi1
+ ...+ pin

qin

n

)
and following relation can be seen as well in the same literature

C1
f (P1, Q1) ≥ C2

f (P1, P2, Q1, Q2) ≥ ... ≥ Cn
f (P1, ..., Pn, Q1, ..., Qn)

≥ Cn+1
f (P1, ..., Pn+1, Q1, ..., Qn+1) ≥ f (1) .

Divergences between more than two probability distributions are useful for dis-
crimination and taxonomy.

Definition 1.1. Convex function: A function f (t) is said to be convex over an
interval (a, b) if for every t1, t2 ∈ (a, b) and 0 ≤ λ ≤ 1, we have

f [λt1 + (1− λ) t2] ≤ λf (t1) + (1− λ) f (t2) ,

and said to be strictly convex if equality does not hold only if λ ̸= 0 or λ ̸= 1.
Geometrically, it means that if A,B,C are three distinct points on the graph of
convex function f with B between A and C, then B is on or below chord AC.

Definition 1.2. Jensen inequality: Let f : I ⊂ R→ R be differentiable convex
on I0 (I0 is the interior of the interval I), ti ∈ I0, λi > 0 ∀ i = 1, 2, ..., n and∑n

i=1 λi = 1, then we have the following inequality.

f

(
n∑

i=1

λiti

)
≤

n∑
i=1

λif (ti) . (2)

If function is concave, then Jensen’s inequality will be reversed.

Corollary 1.3. After replacing λi with qi as
∑n

i=1 qi = 1 and ti with pi

qi
for

each i = 1, ..., n by assuming that the function is normalized, i.e., f (1) = 0, we
get

f (1) ≤
n∑

i=1

qif

(
pi
qi

)
,i.e.,Cf (P,Q) ≥ 0.

The following theorem is well known in literature [13].

Theorem 1.4. If the function f is convex and normalized, i.e., f ′′ (t) ≥ 0 ∀ t >
0 and f (1) = 0 respectively, then Cf (P,Q) and its adjoint Cf (Q,P ) are both
non-negative and convex in the pair of probability distribution (P,Q) ∈ Γn×Γn.

The following theorem is given by Taneja (2005), which relates two generalized
f - divergence measures.
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Theorem 1.5. Let f1, f2 : I ⊂ R+ → R be two convex differentiable and
normalized functions, i.e., f ′′1 (t) , f ′′2 (t) ≥ 0 ∀ t > 0 and f1 (1) = f2 (1) = 0
respectively and suppose the following assumptions.
(i) f1 and f2 are twice differentiable on (α, β), 0 < α ≤ 1 < β <∞.
(ii) There exists the real constants m,M such that m < M and

m ≤ f ′′1 (t)

f ′′2 (t)
≤M,f ′′2 (t) ̸= 0 ∀ t ∈ (α, β) . (3)

If P,Q ∈ Γn, then we have the following inequalities

mCf2 (P,Q) ≤ Cf1 (P,Q) ≤MCf2 (P,Q) , (4)

where Cf (P,Q) is given by (1).

2. New exponential divergence measure and properties

In this section, we introduce a new exponential divergence measure of Csiszar’s
class and define the properties.
Let f : (0,∞) → R be a real differentiable mapping, which is defined as

f (t) = f1 (t) = et (t− 1) , ∀ t ∈ (0,∞) , (5)

f ′1 (t) = tet

and

f ′′1 (t) = et (t+ 1) . (6)

We can check that the function f1 (t) is exponential in nature and convex nor-
malized because f ′′1 (t) > 0 ∀ t ∈ (0,∞) and f1 (1) = 0 respectively. Further
f1 (t) is monotonically increasing in (0,∞) as f ′1 (t) > 0 in (0,∞).
After putting this exponential function in (1), we obtain

Cf1 (P,Q) = Gexp (P,Q) =
n∑

i=1

e
pi
qi (pi − qi) . (7)

In view of corollary (1.3) and theorem (1.4), we see that Gexp (P,Q) is positive
and convex for the pair of probability distribution (P,Q) ∈ Γn × Γn and equal
to zero (Non- degeneracy) or attains its minimum value when pi = qi. We can
also see that Gexp (P,Q) is non- symmetric divergence w.r.t. P and Q because
Gexp (P,Q) ̸= Gexp (Q,P ).

Remark 2.1. If function f (t) is convex in interval (0,∞), then f∗ (t) = tf
(
1
t

)
=

e
1
t (1− t) will be a convex function as well because f ′′∗ (t) =

e
1
t (4t2−3t+1)

t2 >
0 ∀ t > 0, called conjugate of f (t). By putting this conjugate convex function

in (1), we get Cf∗ (P,Q) = G∗
exp (P,Q) =

∑n
i=1 e

qi
pi (qi − pi), and we can see

Gexp (P,Q) +G∗
exp (P,Q) =

n∑
i=1

(pi − qi)
(
e

pi
qi − e

qi
pi

)
(8)

is a symmetric exponential divergence.
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Consequently, we obtain the following intra relations among new exponential
divergences by applying remark (1.1), for comparing multiple number of discrete
probability distributions taking normalized function

G1
exp (P1, Q1) ≥ G2

exp (P1, P2, Q1, Q2) ≥ ... ≥ Gn
exp (P1, ..., Pn, Q1, ..., Qn)

≥ Gn+1
exp (P1, ..., Pn+1, Q1, ..., Qn+1) ≥ 0. (9)

Remark 2.2. Bajaj and Hooda (2010) have defined ’useful’ fuzzy directed di-
vergence of fuzzy set A from fuzzy set B. We can also define a new exponential
measure of ’useful’ fuzzy directed divergence on the same lines, for this let A
and B be two standard fuzzy sets with same supporting points x1, x2, ..., xn
and with fuzzy vectors µA (x1) , ..., µA (xn) and µB (x1) , ..., µB (xn), then fuzzy
information measure corresponding to new exponential measure (7), will be

G∧
exp (A,B) =

n∑
i=1

[µA (xi)− µB (xi)] e
µA(xi)
µB(xi) +

n∑
i=1

[µB (xi)− µA (xi)] e
1−µA(xi)
1−µB(xi) ,

i.e., G∧
exp (A,B) =

n∑
i=1

[µA (xi)− µB (xi)]

[
e

µA(xi)
µB(xi) − e

1−µA(xi)
1−µB(xi)

]
. (10)

Consequently, let ui > 0 be the utilities of the events Ei with probabilities
pi and revised probabilities qi respectively, for all i = 1, 2, ..., n. Then Useful
information measure corresponding to new exponential divergence measure (7),
will be

Gexp (P,Q;u) =

∑n
i=1 uie

pi
qi (pi − qi)∑n

i=1 uipi
. (11)

If utilities are ignored, i.e., ui = 1 for each i, then we obtain the as usual
Gexp (P,Q). Fuzzy information measures are very useful to find the amount of
average ambiguity or difficulty in making a decision whether an element belongs
to a set or not, whereas Useful information measure are very useful to find utility
of an event, i.e., an event is how much useful compare to other event.

Figure 1. Convex function f1 (t)



300 K.C. Jain, Praphull Chhabra

3. Bounds of new divergence measure

To estimate the new exponential divergence Gexp (P,Q), it would be very in-
teresting to establish some upper and lower bounds. So in this section, we obtain
bounds of the exponential divergence measure (7) in terms of other symmetric
and non- symmetric divergence measures.

Proposition 3.1. Let P,Q ∈ Γn and 0 < α ≤ 1 < β <∞, then we have

eα (1 + α)
4

8
∆ (P,Q) ≤ Gexp (P,Q) ≤ eβ (1 + β)

4

8
∆ (P,Q) , (12)

where Gexp (P,Q) and ∆(P,Q) are given by (7) and (15) respectively.

Proof. Let us consider

f2 (t) =
(t− 1)

2

t+ 1
, t ∈ (0,∞) (13)

and

f ′2 (t) =
(t− 1) (t+ 3)

(t+ 1)
2 ,

f ′′2 (t) =
8

(t+ 1)
3 . (14)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized
function respectively. By putting f2 (t) in (1), we get

Cf2 (P,Q) =

n∑
i=1

(pi − qi)
2

pi + qi
= ∆(P,Q) , (15)

where ∆ (P,Q) is called the Triangular discrimination [14].
Now, let

g (t) =
f ′′1 (t)

f ′′2 (t)
=
et (1 + t)

4

8
,

where f ′′1 (t) and f ′′2 (t) are given by (6) and (14) respectively and

g′ (t) =
et (1 + t)

3
(5 + t)

8
.

It is clear that g′ (t) > 0 for t > 0, therefore g (t) is strictly increasing function
in interval (0,∞). So

m = inf
t∈(α,β)

g (t) = g (α) =
eα (1 + α)

4

8
(16)

and

M = sup
t∈(α,β)

g (t) = g (β) =
eβ (1 + β)

4

8
. (17)

The result (12) is obtained by using (7), (15), (16), and (17) in inequality (4). �
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Proposition 3.2. Let P,Q ∈ Γn and 0 < α ≤ 1 < β <∞, then we have

4eα (1 + α)α
3
2h (P,Q) ≤ Gexp (P,Q) ≤ 4eβ (1 + β)β

3
2h (P,Q) , (18)

where Gexp (P,Q) and h (P,Q) are given by (7) and (21) respectively.

Proof. Let us consider

f2 (t) =

(
1−

√
t
)2

2
, t ∈ (0,∞) (19)

and

f ′2 (t) = −
(
1−

√
t
)

2
√
t

,

f ′′2 (t) =
1

4t
3
2

. (20)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized
function respectively. By putting f2 (t) in (1), we get

Cf2 (P,Q) =
n∑

i=1

(√
pi −

√
qi
)2

2
= h (P,Q) , (21)

where h (P,Q) is called the Hellinger discrimination or Kolmogorov’s divergence
[19].
Now, let

g (t) =
f ′′1 (t)

f ′′2 (t)
= 4et (1 + t) t

3
2 ,

where f ′′1 (t) and f ′′2 (t) are given by (6) and (20) respectively and

g′ (t) = 2et
√
t (3 + t) (2t+ 1) .

It is clear that g′ (t) > 0 for t > 0, therefore g (t) is strictly increasing function
in interval (0,∞). So

m = inf
t∈(α,β)

g (t) = g (α) = 4eα (1 + α)α
3
2 (22)

and
M = sup

t∈(α,β)

g (t) = g (β) = 4eβ (1 + β)β
3
2 . (23)

The result (18) is obtained by using (7), (21), (22), and (23) in inequality (4). �

In a similar procedure, we obtain the bounds of Gexp (P,Q) in terms of the
other well known divergence measures. The results are as follows.
(a) If f2 (t) =

t
2 log t+

(
t+1
2

)
log 2

t+1 , then we have

2eαα (1 + α)
2
I (P,Q) ≤ Gexp (P,Q) ≤ 2eββ (1 + β)

2
I (P,Q) , (24)

where

I (P,Q) =
1

2

[
n∑

i=1

pi log
2pi

pi + qi
+

n∑
i=1

qi log
2qi

pi + qi

]
(25)
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is the Jensen- Shannon divergence or Information radius [9, 43].
(b) If f2 (t) = (t− 1) log t, then we have

eαα2J (P,Q) ≤ Gexp (P,Q) ≤ eββ2J (P,Q) , (26)

where

J (P,Q) =
n∑

i=1

(pi − qi) log
pi
qi

(27)

is the J- divergence or Jeffrey- Kullback divergence [24, 31].

(c) If f2 (t) =
(t−1)2√

t
, then we have

4eα (1 + α)α
5
2

3α2 + 2α+ 3
E (P,Q) ≤ Gexp (P,Q) ≤ 4eβ (1 + β)β

5
2

3β2 + 2β + 3
E (P,Q) , (28)

where

E (P,Q) =

n∑
i=1

(pi − qi)
2

√
piqi

(29)

is the Jain- Srivastava divergence [23].

(d) If f2 (t) =
(t−1)2(t+1)

t , then we have

eαα3

2 (α2 − α+ 1)
ψ (P,Q) ≤ Gexp (P,Q) ≤ eββ3

2 (β2 − β + 1)
ψ (P,Q) , (30)

where

ψ (P,Q) =
n∑

i=1

(pi − qi)
2
(pi + qi)

piqi
(31)

is the Symmetric chi- square divergence [17].
(e) If f2 (t) =

(
t+1
2

)
log t+1

2
√
t
, then we have

4eαα2 (1 + α)
2

1 + α2
T (P,Q) ≤ Gexp (P,Q) ≤ 4eββ2 (1 + β)

2

1 + β2
T (P,Q) , (32)

where

T (P,Q) =

n∑
i=1

(
pi + qi

2

)
log

pi + qi
2
√
piqi

(33)

is the Arithmetic- Geometric mean divergence [45].

(f) If f2 (t) =
(t2−1)

2

2t
3
2

, then we have

8eαα
7
2 (1 + α)

15α4 + 2α2 + 15
ψM (P,Q) ≤ Gexp (P,Q) ≤ 8eββ

7
2 (1 + β)

15β4 + 2β2 + 15
ψM (P,Q) , (34)

where

ψM (P,Q) =

n∑
i=1

(
p2i − q2i

)2
2 (piqi)

3
2

(35)
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is the Kumar- Johnson divergence [32].
(g) If f2 (t) = (t− 1) log t+1

2 , then we have

eα (1 + α)
3

α+ 3
JR (P,Q) ≤ Gexp (P,Q) ≤ eβ (1 + β)

3

β + 3
JR (P,Q) , (36)

where

JR (P,Q) =

n∑
i=1

(pi − qi) log

(
pi + qi
2qi

)
(37)

is the Relative J- divergence [16].
(h) If f2 (t) = t log t, then we have

α (1 + α) eαK (P,Q) ≤ Gexp (P,Q) ≤ β (1 + β) eβK (P,Q) , (38)

where

K (P,Q) =
n∑

i=1

pi log
pi
qi

(39)

is the Kullback- Leibler divergence or Relative entropy or Directed divergence
or Information gain [31].
(i) If f2 (t) =

(
t+1
2

)
log t+1

2t , then we have

2α2 (1 + α)
2
eαG (P,Q) ≤ Gexp (P,Q) ≤ 2β2 (1 + β)

2
eβG (P,Q) , (40)

where

G (P,Q) =
n∑

i=1

(
pi + qi

2

)
log

pi + qi
2pi

(41)

is the Relative Arithmetic- Geometric divergence [45].

(j) If f2 (t) = (t− 1)
2
, then we have

eα (1 + α)

2
χ2 (P,Q) ≤ Gexp (P,Q) ≤ eβ (1 + β)

2
χ2 (P,Q) , (42)

where

χ2 (P,Q) =

n∑
i=1

(pi − qi)
2

qi
(43)

is the Chi- square divergence or Pearson divergence [37].
(k) If f2 (t) = t log 2t

t+1 , then we have

αeα (1 + α)
3
F (P,Q) ≤ Gexp (P,Q) ≤ αeβ (1 + β)

3
F (P,Q) , (44)

where

F (P,Q) =
n∑

i=1

pi log
2pi

pi + qi
(45)

is the Relative Jensen- Shannon divergence [43].

(l) If f2 (t) =
(t2−1)

2

t , then we have

eα (α+ 1)α3

2 (3α4 + 1)
γ (P,Q) ≤ Gexp (P,Q) ≤ eβ (β + 1)β3

2 (3β4 + 1)
γ (P,Q) , (46)
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where

γ (P,Q) =
n∑

i=1

(
p2i − q2i

)2
piq2i

(47)

is the Jain and Chhabra divergence [21].

Remark 3.1. Divergences (15), (21), (25), (27), (29), (31), (33), (35) are sym-
metric and divergences (37), (39), (41), (43), (45), (47) are non- symmetric with
respect to probability distributions P,Q ∈ Γn.

4. Numerical verification of bounds

In this section, we take an example for calculating the divergences ∆ (P,Q) ,
h (P,Q) , G (P,Q) and Gexp (P,Q) and verify numerically the inequalities (12),
(18), and (40) or verify the bounds of Gexp (P,Q).

Example 4.1. Let P be the binomial probability distribution with parameters
(n = 10, p = 0.7) and Q its approximated Poisson probability distribution with
parameter (λ = np = 7) for the random variable X. Then we have

Table 1. Evaluation of discrete probability distributions for
(n = 10, p = 0.7, q = 0.3)

xi 0 1 2 3 4 5 6 7 8 9 10
pi ≈ .0000059 .000137 .00144 .009 .036 .102 .200 .266 .233 .121 .0282
qi ≈ .000911 .00638 .022 .052 .091 .177 .199 .149 .130 .101 .0709
pi
qi

≈ .00647 .0214 .0654 .173 .395 .871 1.005 1.785 1.792 1.198 .397

By using Table 1, we get the followings.

α (= .00647) ≤ pi
qi

≤ β (= 1.792) . (48)

∆ (P,Q) =

11∑
i=1

(pi − qi)
2

pi + qi
≈ .1812. (49)

h (P,Q) =
11∑
i=1

(√
pi −

√
qi
)2

2
≈ .0502. (50)

G (P,Q) =
11∑
i=1

pi + qi
2

log

(
pi + qi
2pi

)
≈ .0746. (51)

Gexp (P,Q) =

11∑
i=1

e
pi
qi (pi − qi) ≈ .97971. (52)

Put the approximated values from (48) to (52) in inequalities (12), (18), and
(40) respectively and get the following results

.0233 ≤ .97971 ≤ 8.260, 1.508× 10−4 ≤ .97971 ≤ 8.071, 6.367× 10−6

≤ .97971 ≤ 22.414
(53)
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respectively. Hence verified the bounds ofGexp (P,Q) in terms of∆(P,Q) , h (P,Q)

and G (P,Q) for p = 0.7.

Similarly, we can verify the bounds of Gexp (P,Q) in terms of other diver-
gences or can verify the other inequalities for different values of p and q and for
other discrete probability distributions as well, like; Negative binomial, Geomet-
ric, uniform etc.
In Figure 2, we have considered pi = (a, 1− a) , qi = (1− a, a), where a ∈ (0, 1).

Figure 2. Comparison of divergence measures with new expo-
nential divergence measure

It is clear from Figure 2 that the new exponential divergence Gexp (P,Q) has a
steeper slope than ψ (P,Q) , χ2 (P,Q) , E (P,Q) ,∆(P,Q) , h (P,Q) , I (P,Q) , J (P,Q) ,

T (P,Q), and JR (P,Q).

5. Conclusion and discussion

To design a communication system with a specific message handling capabil-
ity, we need a measure of information content to be transmitted. Divergence
measures are for quantifying the dissimilarity among probability distributions.
In this work we introduced a new exponential divergence measure and obtained
the bounds by using Csiszar’s information inequality and verified the bounds
numerically as well in the interval (α, β), 0 < α ≤ 1 < β < ∞. Fuzzy expo-
nential information measure and Useful exponential information measure also
introduced. Work on further generalizations of this new divergence measure is
in progress and will be reported elsewhere, like: Application to the mutual infor-
mation, other relations by using standard algebraic and exponential inequalities,
square root of this new measure is a metric space etc.
We hope that this work will motivate the reader to consider the extensions of
divergence measures in information theory, other problems of functional analysis
and fuzzy mathematics.
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