• Title/Summary/Keyword: numerical testing

Search Result 850, Processing Time 0.024 seconds

Prediction of the Effect of Defect Parameters on the Thermal Contrast Evolution during Flash Thermography by Finite Element Method

  • Yuan, Maodan;Wu, Hu;Tang, Ziqiao;Kim, Hak-Joon;Song, Sung-Jin;Zhang, Jianhai
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • A 3D model based on the finite element method (FEM) was built to simulate the infrared thermography (IRT) inspection process. Thermal contrast is an important parameter in IRT and was proven to be a function of defect parameters. Parametric studies were conducted on internal defects with different depths, thicknesses, and orientations. Thermal contrast evolution profiles with respect to the time of the defect and host material were obtained through numerical simulation. The thermal contrast decreased with defect depth and slightly increased with defect thickness. Different orientations of thin defects were detected with IRT, but doing so for thick defects was difficult. These thermal contrast variations with the defect depth, thickness, and orientation can help in optimizing the experimental process and interpretation of data from IRT.

Case study comparisons of computational fluid dynamics modeling versus tracer test to evaluate the hydraulic efficiency of clearwell (정수지 내 추적자 실험과 CFD(전산유체역학)의 상관관계 분석)

  • Kim, Tae-Kyun;Choi, Young-June;Jo, Young-Mahn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.635-642
    • /
    • 2011
  • Hydraulic efficiency was a vital component in evaluating the disinfection capability of clearwell. Current practice evaluates these system based on the tracer test only. In this paper, CFD(Computational Fluid Dynamics) was applied on the clearwell for alternating or supplementing the tracer test. The baffle factor derived from the CFD modeling closely matched the values obtained from full scale tracer testing. And, for suggesting proper numerical model in clearwell; the turbulence model, discretization scheme, convergence criteria were investigated through separate simulation runs. The model validation was conducted by comparing the simulated data with experimental data. In the turbulence model, the realizable ${\kappa}-{\varepsilon}$ model and the standard ${\kappa}-{\varepsilon}$ model were found to be more appropriate than RNG ${\kappa}-{\varepsilon}$ model. The residuals of convergence criteria should be used as not $10^{-3}$ but $10^{-4}$ or $10^{-5}$. In discretization scheme, the difference of simulated values in 1st, 2nd, 3rd upwind scheme was found to be insignificant. Moreover, the result of this study suggest that CFD modeling can be a reliable alternative to tracer testing for evaluating the hydraulic efficiency.

Method for Selecting a Smart Television Product Model Using AHP (AHP를 이용한 스마트TV 제품모델 선정 방법)

  • Byun, Dae-Ho
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.69-77
    • /
    • 2014
  • Because smart televisions (TVs) have various and innovative functions that are different from traditional TVs, consumers are front with a complex decision-making problem when they want to buy a best TV among alternatives made by many TV makers. TV manufactures have developed and announced different types of smart TV models and they need a comparative study for evaluating their characteristics. In this paper, we suggest the Analytic Hierarchy Process(AHP) method for deciding the best smart TVs regarding many selection criteria. The method provides a decision support for consumers who like to purchase a smart TV. We describe criteria affecting the smart TV selection through a literature review and suggest a user testing method in order to derive accurate judgments from consumers. Using the Expert Choice software package, we show a an numerical example how the priority of smart TVs are computed.

Performance Optimization of High Specific Speed Pump-Turbines by Means of Numerical Flow Simulation (CFD) and Model Testing

  • Kerschberger, Peter;Gehrer, Arno
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.352-359
    • /
    • 2010
  • In recent years, the market has shown increasing interest in pump-turbines. The prompt availability of pumped storage plants and the benefits to the power system achieved by peak lopping, providing reserve capacity, and rapid response in frequency control are providing a growing advantage. In this context, there is a need to develop pumpturbines that can reliably withstand dynamic operation modes, fast changes of discharge rate by adjusting the variable diffuser vanes, as well as fast changes from pumping to turbine operation. In the first part of the present study, various flow patterns linked to operation of a pump-turbine system are discussed. In this context, pump and turbine modes are presented separately and different load cases are shown in each operating mode. In order to create modern, competitive pump-turbine designs, this study further explains what design challenges should be considered in defining the geometry of a pump-turbine impeller. The second part of the paper describes an innovative, staggered approach to impeller development, applied to a low head pump-turbine project. The first level of the process consists of optimization strategies based on evolutionary algorithms together with 3D in-viscid flow analysis. In the next stage, the hydraulic behavior of both pump mode and turbine mode is evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Finally, the progress in hydraulic design is demonstrated by model test results that show a significant improvement in hydraulic performance compared to an existing reference design.

Estimation of the Number of Sources Based on Hypothesis Testing

  • Xiao, Manlin;Wei, Ping;Tai, Heng-Ming
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.481-486
    • /
    • 2012
  • Accurate and efficient estimation of the number of sources is critical for providing the parameter of targets in problems of array signal processing and blind source separation among other such problems. When conventional estimators work in unfavorable scenarios, e.g., at low signal-to-noise ratio (SNR), with a small number of snapshots, or for sources with a different strength, it is challenging to maintain good performance. In this paper, the detection limit of the minimum description length (MDL) estimator and the signal strength required for reliable detection are first discussed. Though a comparison, we analyze the reason that performances of classical estimators deteriorate completely in unfavorable scenarios. After discussing the limiting distribution of eigenvalues of the sample covariance matrix, we propose a new approach for estimating the number of sources which is based on a sequential hypothesis test. The new estimator performs better in unfavorable scenarios and is consistent in the traditional asymptotic sense. Finally, numerical evaluations indicate that the proposed estimator performs well when compared with other traditional estimators at low SNR and in the finite sample size case, especially when weak signals are superimposed on the strong signals.

A PROCEDURE FOR GENERATING IN-CABINET RESPONSE SPECTRA BASED ON STATE-SPACE MODEL IDENTIFICATION BY IMPACT TESTING

  • Cho, Sung-Gook;Cui, Jintao;Kim, Doo-Kie
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.573-582
    • /
    • 2011
  • The in-cabinet response spectrum is used to define the input motion in the seismic qualification of instruments and devices mounted inside an electrical cabinet. This paper presents a procedure for generating the in-cabinet response spectrum for electrical equipment based on in-situ testing by an impact hammer. The proposed procedure includes an algorithm to build the relationship between the impact forces and the measured acceleration responses of cabinet structures by estimating the state-space model. This model is used to predict seismic responses to the equivalent earthquake forces. Three types of structural model are analyzed for numerical verification of the proposed method. A comparison of predicted and simulated response spectra shows good convergence, demonstrating the potential of the proposed method to predict the response spectra for real cabinet structures using vibration tests. The presented procedure eliminates the uncertainty associated with constructing an analytical model of the electrical cabinet, which has complex mass distribution and stiffness.

Estimation of Collapse Moment for Wall Thinned Elbows Using Fuzzy Neural Networks

  • Na, Man-Gyun;Kim, Jin-Weon;Shin, Sun-Ho;Kim, Koung-Suk;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.362-370
    • /
    • 2004
  • In this work, the collapse moment due to wall-thinning defects is estimated by using fuzzy neural networks. The developed fuzzy neural networks have been applied to the numerical data obtained from the finite element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy neural network to reduce the sensitivity to the input change and the fuzzy neural networks are trained by using the data set prepared for training (training data) and verified by using another data set different (independent) from the training data. Also, two fuzzy neural networks are trained for two data sets divided into the two classes of extrados and intrados defects, which is because they have different characteristics. The relative 2-sigma errors of the estimated collapse moment are 3.07% for the training data and 4.12% for the test data. It is known from this result that the fuzzy neural networks are sufficiently accurate to be used in the wall-thinning monitoring of elbows.

Ultrasonic Estimation and FE Analysis of Elastic Modulus of Kelvin Foam

  • Kim, Nohyu;Yang, Seungyong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

Damage Detection in High-Rise Buildings Using Damage-Induced Rotations

  • Sung, Seung Hun;Jung, Ho Youn;Lee, Jung Hoon;Jung, Hyung Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.447-456
    • /
    • 2014
  • In this paper, a new damage-detection method based on structural vibration is proposed. The essence of the proposed method is the detection of abrupt changes in rotation. Damage-induced rotation (DIR), which is determined from the modal flexibility of the structure, initially occurs only at a specific damaged location. Therefore, damage can be localized by evaluating abrupt changes in rotation. We conducted numerical simulations of two damage scenarios using a 10-story cantilever-type building model. Measurement noise was also considered in the simulation. We compared the sensitivity of the proposed method to localize damage to that of two conventional modal-flexibility-based damage-detection methods, i.e., uniform load surface (ULS) and ULS curvature. The proposed method was able to localize damage in both damage scenarios for cantilever structures, but the conventional methods could not.

The tap-scan method for damage detection of bridge structures

  • Xiang, Zhihai;Dai, Xiaowei;Zhang, Yao;Lu, Qiuhai
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.173-191
    • /
    • 2010
  • Damage detection plays a very important role to the maintenance of bridge structures. Traditional damage detection methods are usually based on structural dynamic properties, which are acquired from pre-installed sensors on the bridge. This is not only time-consuming and costly, but also suffers from poor sensitivity to damage if only natural frequencies and mode shapes are concerned in a noisy environment. Recently, the idea of using the dynamic responses of a passing vehicle shows a convenient and economical way for damage detection of bridge structures. Inspired by this new idea and the well-established tap test in the field of non-destructive testing, this paper proposes a new method for obtaining the damage information through the acceleration of a passing vehicle enhanced by a tapping device. Since no finger-print is required of the intact structure, this method can be easily implemented in practice. The logistics of this method is illustrated by a vehicle-bridge interaction model, along with the sensitivity analysis presented in detail. The validity of the method is proved by some numerical examples, and remarks are given concerning the potential implementation of the method as well as the directions for future research.