• Title/Summary/Keyword: numerical testing

Search Result 850, Processing Time 0.025 seconds

Model updating with constrained unscented Kalman filter for hybrid testing

  • Wu, Bin;Wang, Tao
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1105-1129
    • /
    • 2014
  • The unscented Kalman filter (UKF) has been developed for nonlinear model parametric identification, and it assumes that the model parameters are symmetrically distributed about their mean values without any constrains. However, the parameters in many applications are confined within certain ranges to make sense physically. In this paper, a constrained unscented Kalman filter (CUKF) algorithm is proposed to improve accuracy of numerical substructure modeling in hybrid testing. During hybrid testing, the numerical models of numerical substructures which are assumed identical to the physical substructures are updated online with the CUKF approach based on the measurement data from physical substructures. The CUKF method adopts sigma points (i.e., sample points) projecting strategy, with which the positions and weights of sigma points violating constraints are modified. The effectiveness of the proposed hybrid testing method is verified by pure numerical simulation and real-time as well as slower hybrid tests with nonlinear specimens. The results show that the new method has better accuracy compared to conventional hybrid testing with fixed numerical model and hybrid testing based on model updating with UKF.

Two-Dimensional Numerical Modeling and Simulation of Ultrasonic Testing

  • Yim, Hyun-June;Baek, Eun-Sol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.649-658
    • /
    • 2002
  • As an attempt to further improve the reliability and effectiveness of ultrasonic testing (UT), a two-dimensional numerical simulator of UT was developed. The simulator models the wave medium (or test object) using the mass-spring lattice model (MSLM) that consists of mass-points and springs. Some previous simulation results, obtained by using MSLM, are briefly reviewed in this paper, for propagation, reflection, and scattering of ultrasonic waves. Next, the models of transmitting and receiving piezoelectric transducers are introduced with some numerical results, which is a main focus of this paper. The UT simulator, established by combining the transducer models with the MSLM, was used to simulate many UT setups. In this paper, two simple setups are considered as examples, and their simulated A-scan signals are discussed. The potential of the MSLM, transducer models, and the UT simulator developed in this study to be used in the actual UT is confirmed.

Wind turbine testing methods and application of hybrid testing: A review

  • Lalonde, Eric R.;Dai, Kaoshan;Lu, Wensheng;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.195-207
    • /
    • 2019
  • This paper presents an overview of wind turbine research techniques including the recent application of hybrid testing. Wind turbines are complex structures as they are large, slender, and dynamic with many different operational states, which limits applicable research techniques. Traditionally, numerical simulation is widely used to study turbines while experimental tests are rarer and often face cost and equipment restrictions. Hybrid testing is a relatively new simulation method that combines numerical and experimental techniques to accurately capture unknown or complex behaviour by modelling portions of the structure experimentally while numerically simulating the remainder. This can allow for increased detail, scope, and feasibility in wind turbine tests. Hybrid testing appears to be an effective tool for future wind turbine research, and the few studies that have applied it have shown promising results. This paper presents a literature review of experimental and numerical wind turbine testing, hybrid testing in structural engineering, and hybrid testing of wind turbines. Finally, several applications of hybrid testing for future wind turbine studies are proposed including multi-hazard loading, damped turbines, and turbine failure.

Numerical Techniques for Modeling of Ultrasonic Testing - The Finite Difference and Finite Element Methods (초음파검사의 수치적 모델링 기법 - 유한차분법 및 유한요소법)

  • Yim, Hyun-June;Yoo, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.116-129
    • /
    • 2000
  • Due to the great complexity of the physical phenomena involved in most ultrasonic nondestructive testing, the numerical method is effective in many cases of their theoretical modeling. A brief overview is provided in this paper of the numerical methods used in modeling ultrasonic nondestructive testing, with an emphasis on the finite difference and the finite element methods. The procedures of execution, special considerations required, and some previous research results of the finite difference and the finite element methods are presented, with a rather extensive list of work reported in the literature. These numerical modeling techniques for ultrasonic nondestructive testing are expected to be more reliable and more convenient, as a result of the continuing technological development of computers.

  • PDF

Numerical Analysis of Eddy Current Testing for Tube with Axi-symmetric Defect using Boundary Element Method (경계요소법을 이용한 축대칭 결함을 갖는 도체관에 대한 와전류탐상 수치해석)

  • Seo, Jang-Won;Lee, Hyang-Beom;Yoon, Man-Sik;Lim, Eui-Soo;Chung, Tae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.748-750
    • /
    • 2001
  • This paper describes numerical analysis of eddy current testing for tube with axi-symmetric defect using boundary element method. In this ECT(Eddy Current Testing) numerical analysis. BEM and FEM are used to compare their characteristics and results of ECT, respectively BEM is easier than FEM to design geometrically complex domain because in case of BEM, domain is divided into segments or elements, but in case of FEM, domain is divided into small finite triangular or quadrilateral elements. For this reason asymmetry defect is used for this BE numerical analysis. As a result, the similar result can be obtained through both numerical analyses, and BEM can be applied to the numerical analysis of ECT.

  • PDF

Numerical Analysis of Through Transmission Pulsed Eddy Current Testing and Effects of Pulse Width Variation

  • Shin, Young-Kil;Choi, Dong-Myung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.255-261
    • /
    • 2007
  • By using numerical analysis methods, through transmission type pulsed eddy current (PEC) testing is modeled and PEC signal responses due to varying material conductivity, permeability, thickness, lift-off and pulse width are investigated. Results show that the peak amplitude of PEC signal gets reduced and the time to reach the peak amplitude is increased as the material conductivity, permeability, and specimen thickness increase. Also, they indicate that the pulse width needs to be shorter when evaluating the material conductivity and the plate thickness using the peak amplitude, and when the pulse width is long, the peak time is found to be more useful. Other results related to lift-off variation are reported as well.

Accurate numerical modeling for ultrasonic testing of anisotropic welds in nuclear power plants (원전내 이방성 용접부에 대한 초음파검사의 정밀 수치 모델링)

  • Yim, Hyun-June
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.101-105
    • /
    • 2001
  • Due to their elastic anisotropy, ultrasonic testing of austenitic welds, frequently used in nuclear power plants, is much more difficult than that of isotropic elements. For accurate testing of austenitic welds, ultrasonic wave phenomena therein must be full understood. This study uses an accurate and effective numerical model, the mass-spring lattice model, for such phenomena. By comparing the numerical results with the corresponding analytical results, it is shown that the model is capable of accurately predicting the generation, reflection, refraction, and scattering phenomena of ultrasonic waves in anisotropic austenite welds. Therefore, the mass-spring lattice model will provide a very useful tool for simulating ultrasonic testing of austenitic welds, and thus will contribute to the enhancement of reliability of such ultrasonic testing.

  • PDF

Hydraulic conductivity of cemented sand from experiments and 3D Image based numerical analysis

  • Subramanian, Sathya;Zhang, Yi;Vinoth, Ganapathiraman;Moon, Juhyuk;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.423-432
    • /
    • 2020
  • Hydraulic conductivity is one of the engineering properties of soil. This study focusses on the influence of cement content on the hydraulic conductivity of cemented sand, which is investigated based on the results from numerical analysis and laboratory testing. For numerical analysis the cemented samples were scanned using X-ray Computed Tomography (CT) while laboratory testing was carried out using a triaxial setup. Numerical analysis enables us to simulate flow through the sample and provides insight to the microstructure. It quantifies the pore volume, proportion of interconnected voids and pore size distribution in both cemented and uncemented samples, which could be computed only through empirical equations in case of laboratory testing. With reduction in global voids, the interconnecting voids within the samples also reduce with cement content. Gamma cumulative distribution function is used to predict the percentage of voids lesser than a given pore volume. Finally, the results obtained from both numerical analysis and laboratory testing are compared.

Experimental and numerical investigation on the thickness effect of concrete specimens in a new tensile testing apparatus

  • Lei Zhou;Hadi Haeri;Vahab Sarfarazi;Mohammad Fatehi Marji;A.A. Naderi;Mohammadreza Hassannezhad Vayani
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.71-84
    • /
    • 2023
  • In this paper, the effects of the thickness of cubic samples on the tensile strength of concrete blocks were studied using experimental tests in the laboratory and numerical simulation by the particle flow code in three dimensions (PFC3D). Firstly, the physical concrete blocks with dimensions of 150 mm×190 mm (width×height) were prepared. Then, three specimens for each of seven different samples with various thicknesses were built in the laboratory. Simultaneously with the experimental tests, their numerical simulations were performed with PFC3D models. The widths, heights, and thicknesses of the numerical models were the same as those of the experimental samples. These samples were tested with a new tensile testing apparatus. The loading rate was kept at 1 kg/sec during the testing operation. Based on these analyses, it is concluded that when the thickness was less than 5 cm, the tensile strength decreased by increasing the sample thickness. On the other hand, the tensile strength was nearly constant when the sample thickness was raised to more than 5 cm (which can be regarded as a threshold limit for the specimens' thickness). The numerical outputs were similar to the experimental results, demonstrating the validity of the present analyses.