DOI QR코드

DOI QR Code

Hydraulic conductivity of cemented sand from experiments and 3D Image based numerical analysis

  • Subramanian, Sathya (Department of Civil and Environmental Engineering, National University of Singapore) ;
  • Zhang, Yi (Department of Civil and Environmental Engineering, National University of Singapore) ;
  • Vinoth, Ganapathiraman (Department of Civil Engineering, The University of British Columbia) ;
  • Moon, Juhyuk (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Ku, Taeseo (Department of Civil and Environmental Engineering, National University of Singapore)
  • Received : 2019.11.22
  • Accepted : 2020.04.14
  • Published : 2020.06.10

Abstract

Hydraulic conductivity is one of the engineering properties of soil. This study focusses on the influence of cement content on the hydraulic conductivity of cemented sand, which is investigated based on the results from numerical analysis and laboratory testing. For numerical analysis the cemented samples were scanned using X-ray Computed Tomography (CT) while laboratory testing was carried out using a triaxial setup. Numerical analysis enables us to simulate flow through the sample and provides insight to the microstructure. It quantifies the pore volume, proportion of interconnected voids and pore size distribution in both cemented and uncemented samples, which could be computed only through empirical equations in case of laboratory testing. With reduction in global voids, the interconnecting voids within the samples also reduce with cement content. Gamma cumulative distribution function is used to predict the percentage of voids lesser than a given pore volume. Finally, the results obtained from both numerical analysis and laboratory testing are compared.

Keywords

Acknowledgement

This research was supported by the Singapore Ministry of Education (MOE).

References

  1. Acar, Y.B. and El-Tahir, E.T.A. (1986), "Low strain dynamic properties of artificially cemented sand", J. Geotech. Eng., 112(11), 1001-1015. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1001).
  2. Ajorloo, A.M., Mroueh, H. and Lancelot, L. (2012), "Experimental investigation of cement treated sand behavior under triaxial test", Geotech. Geol. Eng., 30(1), 129-143. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1001).
  3. Al Qabany, A. and Soga, K. (2013), "Effect of chemical treatment used in MICP on engineering properties of cemented soils", Geotechnique, 63(4), 331. https://doi.org/10.1680/bcmpge.60531.010.
  4. Cardoso, R. (2016), "Porosity and tortuosity influence on geophysical properties of an artificially cemented sand", Eng. Geol., 211, 198-207. https://doi.org/10.1016/j.enggeo.2016.07.009.
  5. Cardoso, R. (2017), "Influence of water-cement ratio on the hydraulic behavior of an artificially cemented sand", Geotech. Geol. Eng., 35(4), 1513-1527. https://doi.org/10.1007/s10706-017-0190-3.
  6. Carpenter, G. and Stephenson, R. (1986), "Permeability testing in the triaxial cell", Geotech. Test. J., 9(1), 3-9. https://doi.org/10.1520/GTJ10605J.
  7. Chapuis, R.P. (2004), "Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio", Can. Geotech. J., 41(5), 787-795. https://doi.org/10.1139/t04-022.
  8. Chen, B., Sun, D. and Jin, P. (2019), "Experimental study of the effect of microstructure on the permeability of saturated soft clays", Geomech. Eng., 18(1), 49-58. https://doi.org/10.12989/gae.2019.18.1.049.
  9. Choi, S.G., Chu, J. and Kwon, T.H. (2019), "Effect of chemical concentrations on strength and crystal size of biocemented sand", Geomech. Eng., 17(5), 465-473. https://doi.org/10.12989/gae.2019.17.5.465.
  10. Clough, G.W., Sitar, N., Bachus, R.C. and Rad, N.S. (1981), "Cemented sands under static loading", J. Geotech. Geoenviron. Eng., 107(6), 799-817.
  11. Consoli, N.C., Cruz, R.C., Floss, M.F. and Festugato, L. (2009), "Parameters controlling tensile and compressive strength of artificially cemented sand", J. Geotech. Geoenviron. Eng., 136(5), 759-763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278.
  12. Consoli, N.C., Festugato, L., da Rocha, C.G. and Cruz, R.C. (2013), "Key parameters for strength control of rammed sand- cement mixtures: Influence of types of portland cement", Construct. Build. Mater., 49, 591-597. https://doi.org/10.1016/j.conbuildmat.2013.08.062.
  13. Consoli, N.C., Foppa, D., Festugato, L., and Heineck, K.S. (2007), "Key parameters for strength control of artificially cemented soils", J. Geotech. Geoenviron. Eng., 133(2), 197-205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
  14. Crestana, S., Mascarenhas, S. and Pozzi-Mucelli, R.S. (1985), "Static and dynamic three dimensional studies of water in soil using computed tomographic scanning", Soil Sci., 140(5), 326-332. https://doi.org/10.1097/00010694-198511000-00002
  15. Cuccovillo, T. and Coop, M. (1997), "Yielding and pre-failure deformation of structured sands", Geotechnique, 47(3), 491-508. https://doi.org/10.1680/geot.1997.47.3.491.
  16. Daniel, D.E. (1994), State-of-the-Art: Laboratory Hydraulic Conductivity Tests for Saturated Soils, in Hydraulic Conductivity and Waste Contaminant Transport in Soil, ASTM International.
  17. DeJong, J.T., Fritzges, M.B. and Nusslein, K. (2006), "Microbially induced cementation to control sand response to undrained shear", J. Geotech. Geoenviron. Eng., 132(11), 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
  18. DeJong, J.T., Mortensen, B.M., Martinez, B.C. and Nelson, D.C. (2010), "Bio-mediated soil improvement", Ecol. Eng., 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
  19. Dunn, R.J. and Mitchell, J.K. (1984), "Fluid conductivity testing of fine-grained soils", J. Geotech. Eng., 110(11), 1648-1665. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:11(1648).
  20. Edil, T.B. and Erickson, A.E. (1985), Procedure and Equipment Factors affecting Permeability Testing of a Bentonite-Sand Liner Material, in Hydraulic Barriers in Soil and Rock, ASTM International.
  21. Fernandez, A.L. and Santamarina, J.C. (2001), "Effect of cementation on the small-strain parameters of sands", Can. Geotech. J., 38(1), 191-199. https://doi.org/10.1139/t00-081.
  22. Ferris, F.G., Stehmeier, L.G., Kantzas, A. and Mourits, F.M. (1996), "Bacteriogenic mineral plugging", J. Can. Petrol. Technol., 35(08). https://doi.org/10.2118/97-09-07.
  23. Fox, P.J. (1996), "Analysis of hydraulic gradient effects for laboratory hydraulic conductivity testing", Geotech. Test. J., 19(2), 181-190. https://doi.org/10.1520/GTJ10340J.
  24. Garboczi, E.J. and Bentz, D.P. (2001), "The effect of statistical fluctuation, finite size error, and digital resolution on the phase percolation and transport properties of the NIST cement hydration model", Cement Concrete Res., 31(10), 1501-1514. https://doi.org/10.1016/S0008-8846(01)00593-2.
  25. Hainsworth, J.M. and Aylmore, L.A.G. (1983), "The use of computer assisted tomography to determine spatial distribution of soil water content", Soil Res., 21(4), 435-443. https://doi.org/10.1071/SR9830435.
  26. Hang, L., Gao, Y., He, J. and Chu, J. (2019), "Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions", Geomech. Eng., 17(5), 497-505. https://doi.org/10.12989/gae.2019.17.5.497.
  27. Heeraman, D.A., Hopmans, J.W. and Clausnitzer, V. (1997), "Three dimensional imaging of plant roots in situ with X-ray computed tomography", Plant Soil, 189(2), 167-179. https://doi.org/10.1023/B:PLSO.0000009694.64377.6f.
  28. Kawaragi, C., Yoneda, T., Sato, T. and Kaneko, K. (2009), "Microstructure of saturated bentonites characterized by X-ray CT observations", Eng. Geol., 106(1), 51-57. https://doi.org/10.1016/j.enggeo.2009.02.013.
  29. Ketcham, R.A. and Carlson, W.D. (2001), "Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences", Comput. Geosci., 27(4), 381-400. https://doi.org/10.1016/S0098-3004(00)00116-3.
  30. Khan, Q., Subramanian, S., Wong, D.Y.C. and Ku, T. (2019), "Bender elements in stiff cemented clay: Shear wave velocity correction by applying wavelength considerations", Can. Geotech. J., 56(7), 1034-1041. https://doi.org/10.1139/cgj-2018-0153.
  31. Kozaki, T., Suzuki, S., Kozai, N., Sato, S. and Ohashi, H. (2001), "Observation of microstructures of compacted bentonite by microfocus X-ray computerized tomography (Micro-CT)", J. Nucl. Sci. Technol., 38(8), 697-699. https://doi.org/10.1080/18811248.2001.9715085.
  32. Ladd, R.S. (1978), "Preparing test specimens using under compaction", Geotech. Test. J., 1(1), 16-23. https://doi.org/10.1520/GTJ10364J.
  33. Lee, C., Nam, H., Lee, W., Choo, H. and Ku, T. (2019), "Estimating UCS of cement-grouted sand using characteristics of sand and UCS of pure grout", Geomech. Eng., 19(4), 343-352. https://doi.org/10.12989/gae.2019.19.4.343.
  34. Leonards, G.A., Huang, A.B. and Ramos, J. (1991), "Piping and erosion tests at Conner Run Dam", J. Geotech. Eng., 117(1), 108-117. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(108).
  35. Moon, S.W., Vinoth, G., Subramanian, S., Kim, J. and Ku, T. (2019), "Effect of fine particles on strength and stiffness of cement treated sand", Granul. Matter, 22, 9. https://doi.org/10.1007/s10035-019-0975-6.
  36. Mooney, S.J. (2002), "Three dimensional visualization and quantification of soil macroporosity and water flow patterns using computed tomography", Soil Use Manage., 18(2), 142-151. https://doi.org/10.1111/j.1475-2743.2002.tb00232.x.
  37. Narsilio, G.A., Buzzi, O., Fityus, S., Yun, T.S. and Smith, D.W. (2009), "Upscaling of Navier-Stokes equations in porous media: Theoretical, numerical and experimental approach", Comput. Geotech., 36(7), 1200-1206. https://doi.org/10.1016/j.compgeo.2009.05.006.
  38. Nunan, N., Ritz, K., Rivers, M., Feeney, D.S. and Young, I.M. (2006), "Investigating microbial micro-habitat structure using X-ray computed tomography", Geoderma, 133(3), 398-407. https://doi.org/10.1016/j.geoderma.2005.08.004.
  39. Olson, R.E. and Daniel, D.E. (1981), Measurement of the Hydraulic Conductivity of Fine-Grained Soils, in Permeability and Groundwater Contaminant Transport, ASTM International.
  40. Park, D., Kim, I., Kim, G. and Lee, J. (2019), "Effect of groundwater fluctuation on load carrying performance of shallow foundation", Geomech. Eng., 18(6), 575-584. https://doi.org/10.12989/gae.2019.18.6.575.
  41. Peng, S., Marone, F. and Dultz, S. (2014), "Resolution effect in X-ray microcomputed tomography imaging and small pore's contribution to permeability for a Berea sandstone", J. Hydrol., 510, 403-411. https://doi.org/10.1016/j.jhydrol.2013.12.028.
  42. Petrovic, A.M., Siebert, J.E. and Rieke, P.E. (1982), "Soil bulk density analysis in three dimensions by computed tomographic scanning", Soil Sci. Soc. Amer. J., 46(3), 445-450. https://doi.org/10.2136/sssaj1982.03615995004600030001x.
  43. Pierret, A., Capowiez, Y., Belzunces, L. and Moran, C.J. (2002), "3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis", Geoderma, 106(3), 247-271. https://doi.org/10.1016/S0016-7061(01)00127-6.
  44. Provis, J.L., Myers, R.J., White, C.E., Rose, V. and van Deventer, J.S.J. (2012), "X-ray microtomography shows pore structure and tortuosity in alkali-activated binders", Cement Concrete Res., 42(6), 855-864. https://doi.org/10.1016/j.cemconres.2012.03.004
  45. Rogasik, H., Onasch, I., Brunotte, J., Jegou, D. and Wendroth, O. (2003), "Assessment of soil structure using X-ray computed tomography", Geol. Soc. London Special Publ., 215(1), 151-165. https://doi.org/10.1144/GSL.SP.2003.215.01.14.
  46. Rotta, G.V., Consoli, N.C., Prietto, P.D.M., Coop, M.R. and Graham, J. (2003), "Isotropic yielding in an artificially cemented soil cured under stress", Geotechnique, 53(5), 493-501. https://doi.org/10.1680/geot.2003.53.5.493.
  47. Sariosseiri, F. and Muhunthan, B. (2009), "Effect of cement treatment on geotechnical properties of some Washington State soils", Eng. Geol., 104(1), 119-125. https://doi.org/10.1016/j.enggeo.2008.09.003.
  48. Sarkar, G. and Siddiqua, S. (2016), "Effect of fluid chemistry on the microstructure of light backfill: An X-ray CT investigation", Eng. Geol., 202, 153-162. https://doi.org/10.1016/j.enggeo.2016.01.012.
  49. Saxena, S.K., Avramidis, A.S. and Reddy, K.R. (1988), "Dynamic moduli and damping ratios for cemented sands at low strains", Can. Geotech. J., 25(2), 353-368. https://doi.org/10.1139/t88-036.
  50. Schnaid, F., Prietto, P.D.M. and Consoli, N.C. (2001), "Characterization of cemented sand in triaxial compression", J. Geotech. Geoenviron. Eng., 127(10), 857-868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857).
  51. Schwartz, F.W. and Zhang, H. (2003), Fundamentals of Groundwater, John Wiley & Sons. New York, U.S.A.
  52. Sidik, W.S., Canakci, H., Kilic, I.H. and Celik, F. (2014), "Applicability of biocementation for organic soil and its effect on permeability", Geomech. Eng., 7(6), 649-663. https://doi.org/10.12989/gae.2014.7.6.649.
  53. Subramanian, S., Khan, Q. and Ku, T. (2019), "Strength development and prediction of calcium sulfoaluminate treated sand with optimized gypsum for replacing OPC in ground improvement", Construct. Build. Mater., 202, 308-318. https://doi.org/10.1016/j.conbuildmat.2018.12.121.
  54. Subramanian, S., Moon, S.W., Moon, J. and Ku, T. (2018), "CSA treated sand for ground improvement: Microstructure analysis and rapid strength development", J. Mater. Civ. Eng., 30(12), 04018313. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002523.
  55. Uchikawa, H. (1989), "Similarities and discrepancies of hardened cement paste, mortar and concrete from the standpoints of composition and structure", Proceeding of the Engineering Foundation Conference' Advances in Cement Manufacture and Use'at Trout Lodge, Potosi, Missouri, U.S.A.
  56. Viggiani, G., Ando, E., Takano, D. and Santamarina, J.C. (2015), "Laboratory X-ray tomography: A valuable experimental tool for revealing processes in soils", Geotech. Test. J., 38(1), 61-70. https://doi.org/10.1520/GTJ20140060.
  57. Wang, Y.H. and Leung, S.C. (2008), "A particulate-scale investigation of cemented sand behavior", Can. Geotech. J., 45(1), 29-44. https://doi.org/10.1139/T07-070.
  58. Wei, X. and Ku, T. (2020), "New design chart for geotechnical ground improvement: Characterizing cement-stabilized sand", Acta Geotechnica, 15(4), 999-1011. https://doi.org/10.1007/s11440-019-00838-2.
  59. Xiao, H., Lee, F.H. and Chin, K.G. (2014), "Yielding of cement-treated marine clay", Soils Found., 54(3), 488-501. https://doi.org/10.1016/j.sandf.2014.04.021.
  60. Yilmaz, Y., Eun, J. and Goren, A. (2018), "Individual and combined effect of Portland cement and chemical agents on unconfined compressive strength for high plasticity clayey soils", Geomech. Eng., 16(4), 375-384. https://doi.org/10.12989/gae.2018.16.4.375.
  61. Young, I.M., Crawford, J.W. and Rappoldt, C. (2001), "New methods and models for characterising structural heterogeneity of soil", Soil Tillage Res., 61(1), 33-45. https://doi.org/10.1016/S0167-1987(01)00188-X.