• Title/Summary/Keyword: numerical singularity

Search Result 179, Processing Time 0.025 seconds

The Singularity Analysis of the Casing Oscillator (케이싱 오실레이터의 특이점 해석)

  • 남윤주;배형섭;박명관
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.100-108
    • /
    • 2004
  • In this paper, the new casing oscillator, which is a construction machine and which structure is similar to that of a parallel manipulator with redundancy, is proposed. The singularity analysis of this machine is performed by two different methods. First, the singularities are found by the numerical method at configurations where the rank of the Jacobian matrix becomes deficient. The singularities are outside the workspace. To investigate the physical information on these configurations, the singularities are examined by the geometric method at configurations where the casing oscillator cannot resist the external forces and moments applied to the upper platform due to losing static equilibrium. The results of the geometric method are the same as those of the numerical method. It proves that the new casing oscillator is free from the singularity, which causes serious problems to a parallel manipulator.

Numerical Simulation of Hybrid Polarization Singularity Configurations

  • Ye, Dong;Peng, Xinyu;Zhou, Muchun;Song, Minmin
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.396-401
    • /
    • 2017
  • In this article, we proposed hybrid polarization singularity configurations, based on the superposition of two orthogonal circularly polarized components, one of which is a light beam with two optical vortices. The topological configurations are the hybridization of lowest-order polarization singularities, but are different from high-order polarization singularities. Our numerical simulation may provide a theoretical basis for expanding the variety of polarization singularity configuration.

Analytic Solution to the Spatial Propagation of the Flexible Structures (유연한 구조물의 공간전파에 관한 해석적 해법)

  • Seok, Jin-Yeong;Jeong, Eun-Tae;Kim, Yu-Dan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2040-2047
    • /
    • 2001
  • In this paper, a singularity problem of the state transition matrix is investigated in the spatial propagation when the spatial matrix differential equation is constructed via time finite element analysis. A parametric study shows that the degree of singularity of the state transition matrix depends on the degree of flexibility of the structures. As an alternative to avoid the numerical problems due to the singularity, an analytic solution fur spatial propagation of the flexible structures is proposed. In the proposed method, the spatial properties of the structure are analytically expressed by a combination of transcendental functions. The analytic solution serves fast and accurate results by eliminating the possibility of the error accumulation caused by the boundary condition. Several numerical examples are shown to validate the effectiveness of the proposed methods.

Method of Numerical Simulation by Using the Local Harmonic Functions in the Cylindrical Coordinates (국소적 조화함수를 사용한 원통좌표계에서의 유동 해석)

  • Suh, Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.300-305
    • /
    • 2007
  • Many practical flow problems are defined with the circular boundary. Fluid flows within a circular boundary are however susceptible to a singularity problem when the cylindrical coordinates are employed. To remove this singularity a method has been developed in this study which uses the local harmonic functions in discretization of derivatives as well as interpolation. This paper describes the basic reason for introducing the harmonic functions and the overall numerical methods. The numerical methods are evaluated in terms of the accuracy and the stability. The Lamb-dipole flow is selected as a test flow. We will see that the harmonic-function method indeed gives more accurate solutions than the conventional methods in which the polynomial functions are utilized.

Analysis of Stresses Induced in a Polymer Coating Layer due to Temperature Change (온도변화에 대한 고분자 코팅 층에 발생하는 응력 해석)

  • 박명규;이상순;서창민
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.72-76
    • /
    • 2003
  • This paper deals with the stress singularity developed in a polymer layer that is coated to a concrete surface, due to temperature change. The boundary element method is employed to investigate the behavior of interface stresses. The polymeric layer is assumed to be a linear viscoelastic material, and is thermorheologically simple. The order of the singularity is obtained, numerically, for a given viscoelastic model. Numerical results exhibit the relaxation of interface stresses, and large gradients are observed in the vicinity of the free surface. Results show that the stress singularity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model.

Theoretical Investigation on the Singularity System to Represent Two Circular Cylinders in an Inviscid Flow

  • Lee, D.K.
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.8-13
    • /
    • 2000
  • The singularity system to represent two circular cylinders poised under different ambient flow fields is considered in the present research. The singularity system, being composed of a series of singularities, has to be truncated for numerical calculations. A rational criterion to determine how many terms of this series should be retained to maintain the prescribed accuracy is provided through analysis of the converging property of the series. A particular emphasis is put to how to deal with the discrete vortex model of a boundary layer, this possibility being the basis for the development of a tool to simulate vortex shedding from a structure composed of two circular cylinders. The principle to obtain the present singularity system can be applied to more-than-cylinders structure. Only th series become much more complex with increase of the number of cylinders.

  • PDF

Geometric Optimization Involving Contact Stress Singularities (특이 접촉응력 문제의 형상 최적화)

  • Park, Jung-sun;Lee, Soo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.180-188
    • /
    • 1996
  • The stress singularity of a sharp wedge contacting a half plane can be avoided by changing the wedge shape. Shape optimization is accomplished with the geometric strain method (GSM), an optimality criterion method. Several numerical examples are provided for different materials in the wedge and half plane to avoid stress singularity neal the sharp corner of the wedge. Optimum wedge shapes are obtained and critical corner angles are compared with the angles from analytical contact mechanics. Numerical results are well matched to analytical and experimental results. It is shown that shape optimization by the geometric strain method is a useful tool to reshape the wedge and to avoid a stress singulatiry. The method applies to more general geometries where the singular behavior would be difficult to avoid by classical means.

Finite Element Analysis Using an Analytical Solution (해석해를 이용한 유한 요소 해석법)

  • Huh, Young-Woo;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.458-463
    • /
    • 2000
  • The mechanical structures generally have discontinuous parts such as the cracks, notches and holes owing to various reasons. In this paper, in order to analyze effectively these singularity problems using the finite element method, a mixed analysis method which an analytical solution and finite element solutions are simultaneously used is newly proposed. As the analytical solution is used in the singularity region and the finite element solutions are used in the remaining regions except this singular zone, this analysis method reasonably provides for the numerical solution of a singularity problem. Through various numerical examples, it is shown that the proposed analysis method is very convenient and gives comparatively accurate solution.

  • PDF

Analytical Evaluation of the Surface Integral in the Singularity Methods

  • Suh, Jung-Chun
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-17
    • /
    • 1994
  • For a planar curve-sided panel with constant or linear density distributions of source or doublet in the singularity methods, Cantaloube and Rehbach show that the surface integral can be transformed into contour integral by using Stokes'formulas. As an extension of their formulations, this paper deals with a planar polygonal panel for which we derive the closed-forms of the potentials and the velocities induced by the singularity distributions. Test calculations show that the analytical evaluation of the closed-forms is superior to numerical integration (suggested by Cantaloube and Rehbach) of the contour integral. The compact and explicit expressions may produce accurate values of matrix elements of simultaneous linear equations in the singularity methods with much reduced computer time.

  • PDF

A Study on Logarithmic Stress Singularities and Coefficient Vectors for V-notched Cracks in Dissimilar Materials (이종재 V-노치 균열의 대수응력특이성과 계수벡터에 관한 연구)

  • 조상봉;김우진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.159-165
    • /
    • 2003
  • Most engineers interested in stress singularities have focused mainly on the research of power stress singularities for v-notched cracks in dissimilar materials. The logarithmic stress singularity was discussed a little in Bogy's paper. The power-logarithmic stress singularity was reported by Dempsey and Sinclair. It was indicated that the logarithmic singularity is only a special case of power-logarithmic stress singularities. Then, Dempsey reported specific cases which have power-logarithmic singularities even fur homogeneous boundary conditions. It was known that logarithmic stress singularities for v-notched cracks in dissimilar materials occurs when the surfaces of a v-notched crack have constant tractions. In this paper, using the complex potential method, the stresses and displacements having logarithmic stress singularities were obtained and the coefficients vectors were calculated by a numerical program code: Mathematica. It was shown that our analysis models don't have logarithmic stress singularities under the constant tractions, although the coefficient vectors are existing.