• 제목/요약/키워드: numerical results

검색결과 22,075건 처리시간 0.044초

육상구조물군에 작용하는 지진해일파력의 3차원수치해석 (Numerical Analysis for Three-Dimensional Tsunami Force Acting on Multi-Onshore Structures)

  • 이광호;하선욱;이귀섭;김도삼
    • 대한토목학회논문집
    • /
    • 제31권2B호
    • /
    • pp.175-185
    • /
    • 2011
  • 본 연구에서는 복수의 육상구조물군에 작용하는 지진해일파력을 Navier-Stokes solver에 기초한 3차원혼상류해석법으로부터 수치적으로 검토하였다. 특히, 육상구조물의 배치형상과 호안에서의 이격거리 등에 따른 지진해일파력의 특성을 수치실험을 통해 조사하였다. 육상구조물군에 작용하는 지진해일파력에 대한 기존의 수리실험결과와 비교 및 분석하여 본 3차원수치해석의 적용성을 검토하였다. 그리고, 육상구조물에 작용하는 지진해일파력의 추정을 위해 정수압적인 방법과 동수압적인 방법을 각각 적용하여 기존실험결과 및 설계기준과의 비교를 통하여 3차원수치해석의 유용성을 검토하였으며, 기존실험결과와 수치해석결과를 동시에 고려하여 동수압적인 추정법에 관한 회귀식을 제안하였다. 이로부터 육상구조물에 작용하는 지진해일 파력의 산정에 관한 본 수치해석의 유용성을 확인할 수 있었다.

LDV Measurement, Flow Visualization and Numerical Analysis of Flow Distribution in a Close-Coupled Catalytic Converter

  • Kim, Duk-Sang;Cho, Yong-Seok
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.2032-2041
    • /
    • 2004
  • Results from an experimental study of flow distribution in a close-coupled catalytic converter(CCC) are presented. The experiments were carried out with a flow measurement system specially designed for this study under steady and transient flow conditions. A pitot tube was a tool for measuring flow distribution at the exit of the first monolith. The flow distribution of the CCC was also measured by LDV system and flow visualization. Results from numerical analysis are also presented. Experimental results showed that the flow uniformity index decreases as flow Reynolds number increases. In steady flow conditions, the flow through each exhaust pipe made some flow concentrations on a specific region of the CCC inlet. The transient test results showed that the flow through each exhaust pipe in the engine firing order, interacted with each other to ensure that the flow distribution was uniform. The results of numerical analysis were qualitatively accepted with experimental results. They supported and helped explain the flow in the entry region of CCC.

구리지역의 홍수범람해석 (Numerical Simulations of Flood Inundations in Guri)

  • 유재홍;조용식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1174-1178
    • /
    • 2005
  • In this study, flood inundations have been simulated by using the numerical model FLUMEN solving the shallow-water equations with a finite volume method. Before applying to a real problem, the numerical model is first applied to simplified problems. Obtained numerical results are verified by comparing to available analytical solutions and laboratory measurements. Reasonable agreements are observed. The model is then applied to a simulation of flood events with real geometries. The results of the present study provide basic informations for a flood inundation map.

  • PDF

모델엔진 실린더내의 유동에 대한 다차원 수치해석 (Multidimensional numerical simulation of flows in the cylinder of a model engine)

  • 정진은;김응서
    • 오토저널
    • /
    • 제11권3호
    • /
    • pp.29-36
    • /
    • 1989
  • A multidimensional numerical simulation for flows in an engine with axisymmetric geometry was performed. Three kinds of differencing schemes, namely, skew upwind differencing scheme (SUDS), interpolated upwind differencing scheme (IUDS), upwind differencing scheme (UDS), are used in a comparative study. Simultaneously, the effects of the artificial dampings and the grids on numerical results are estimated. Compared with the measurements, the calculations with SUDS and proper artificial damping show very similar qualitative tendency with observed results. But there are some discrepancies due to numerical errors and unclear boundary conditions.

  • PDF

Numerical simulation of diffusion in the stratified flow

  • Mizumoto N.;Kawamura T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.255-256
    • /
    • 2003
  • Simulations of atmospheric diffusion process under stable and unstable conditions were carried out using both numerical and experimental methods. Results from the previous study show that numerical simulation using 3-dimensional incompressible Navier-Stokes equation and density deviation are in good agreement with typical plume pattern. In this study, we use experimental data of temperature and wind profile obtained from a thermally stratified wind tunnel as initial conditions for numerical simulation and compare the results.

  • PDF

인발가공에 있어서 마찰수식모델에 관한 연구 (A Study on the Numerical Friction Model in the Drawing)

  • 오박균
    • 한국산학기술학회논문지
    • /
    • 제5권3호
    • /
    • pp.260-265
    • /
    • 2004
  • In order to analyze the shaped drawing process, it is necessary that the friction boundary condition between dies and blanks should be worked out the accurate numerical friction models. But, the existing numerical models of the drawing may be large different from the actual conditions. In this paper, accurate analysis of the drawing process should be subjected. It is to develop accuracy of the numerical friction models and potentialize to apply for the high speed forming work in the drawing process. Therefore, the results should improve the accuracy, cause the energy saving for the drawing process and finally expand the applying areas of the results.

  • PDF

Numerical Models of Water Wave with Parabolic and Hyperbolic Forms

  • Lee, Jong-Kyu;Lee, Chang-Hae
    • Korean Journal of Hydrosciences
    • /
    • 제2권
    • /
    • pp.25-37
    • /
    • 1991
  • The numerical models of the parabolic equation, applicable only to the progressive wave, and hyperblic equation, which may consider even the reflected wave, were developed and applied to the area of the submerged circular shoal and then results obtained from both models were compared with experimental measurements and each other. The hyperbolic model was further applied to both the detaced breakwater and the breakwater with a gap. The numerical results were plotted and compated with the existing data. Numerical solutions were obtained with the finite difference method.

  • PDF

입자결합모델을 이용한 동적콘관입시험(DCPT)의 수치해석 모델링에 관한 연구 (A Study on Numerical Modeling of Dynamic CPT using Particle Flow Code)

  • 유광호;이창수;최준성
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.43-52
    • /
    • 2014
  • PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.

수치해석기법을 이용한 지오텍스타일 튜브의 거동분석 (Behavior of Geotextile Tube by Numerical Analysis)

  • 신은철;오영인;조인휘
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.385-392
    • /
    • 2003
  • Traditional forms of river and coastal structures have become very expensive to build and maintain, because of the shortage of natural rock. Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. In this study, the numerical analysis was performed to investigate the behavior of geotextile tube with various properties of geotextile and hydraulic pumping conditions. Numerical analysis was executed to compare with the results from the large-scale field model tests, and also compared the results of 2-D plane strain analysis and 3-D FEM analysis. A geotextile tube was modeled using the commercial finite element analysis program ABAQUS and the one-quarter of tube was modeled. Behavior of geotextile tube during the hydraulic pumping procedure was analyzed by comparing the large-scale field model test and numerical analysis. The shape variation and maximum tube height between the numerical analysis results and large-scale filed test results are turned out to be a good agreement.

  • PDF

분할격자를 이용한 댐붕괴파의 수치해석 (Numerical Simulation of Dam-Break Problem with Cut-cell Method)

  • 김형준;유제선;이승오;조용식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1752-1756
    • /
    • 2008
  • A simple, accurate and efficient mesh generation technique, the cut-cell method, is able to represent an arbitrarily complex geometry. Both structured and unstructured grid meshes are used in this method. First, the numerical domain is constructed with regular Cartesian grids as a background grid and then the solid boundaries or bodies are cut out of the background Cartesian grids. As a result, some boundary cells can be contained two numerical conditions such as the flow and solid conditions, where the special treatment is needed to simulate such physical characteristics. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. Also, the TVD-WAF method is applied on the Cartesian cut-cell grids to stabilize numerical results. Present method is validated for the rectangular dam break problems. Initially, a conventional grid is constructed with the Cartesian regular mesh only and then applied to the dam-break flow simulation. As a comparative simulation, a cut-cell grids are applied to represent the flow domain rotated with arbitrary angles. Numerical results from this study are compared with the results from the case of the Cartesian regular mesh only. A good agreement is achieved with other numerical results presented in the literature.

  • PDF