• Title/Summary/Keyword: numerical range

Search Result 2,374, Processing Time 0.027 seconds

Numerical Simulation of Flows Past Two spheres aligned in the streamwise direction (유동 방향으로 놓여진 2개의 구를 지나는 유동에 대한 수치 해석적 연구)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1418-1423
    • /
    • 2004
  • A parametric study on the interactions of two spheres aligned in the streamwise direction is carried out using an immersed boundary method. The numerical results for the case of single sphere for the range of Re ${\leq}$ 300 are in good agreement with other authors' experimental and numerical results currently available. Then, our main investigation is focused on identifying the change of the vortical structures in the presence of a nearby sphere aligned in the streamwise direction for the range Re ${\leq}$ 220. It turns out that significant changes in physical characteristics are noticed depending on how close the two spheres are. In this paper, not only quantitative changes in the key physical parameters such as the force coefficients, but also qualitative changes in vortex structures are reported and analyzed.

  • PDF

Development and Analysis on Noise Characteristics of Low Noise Cooling Fan for an Alternator by Using Numerical Method (수치적 방법을 이용한 저소음 얼터네이터 냉각팬의 개발 및 소음 특성 분석)

  • Kim, Wook;Jeon, Wan-Ho;Hyun, Jae-Jin;Lim, Chul-Koo;Lee, Sung-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.608-609
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and FlowNoise S/W are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF

Consideration on Effects of Mesh Systems on True Stress-Strain Acquisition Method over a Large Range of Strains by Tensile Test and Finite Element Method (유한요소망이 인장시험과 유한요소법을 이용한 진응력-진변형곡선 획득 기법에 미치는 영향에 관한 고찰)

  • Kim, Hong-Tae;Eom, Jae-Gun;Choi, In-Su;Lee, Min-Cheol;Joun, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.808-813
    • /
    • 2007
  • We present the numerical characteristics of a new true stress-strain curve acquisition method over a large range of strains by the tensile test and a finite element method through comparing the results obtained by various finite element mesh systems. The method is introduced in detail. The effects of the finite element mesh systems on the results are investigated to show its numerical characteristics of the new method. It is shown that the method is quite robust, implying that it can be used as a special function of the tensile test machines.

  • PDF

Fourier series expansion method for plated-structures

  • Deng, Jiann-Gang;Cheng, Fu-Ping
    • Structural Engineering and Mechanics
    • /
    • v.8 no.4
    • /
    • pp.343-360
    • /
    • 1999
  • This work applies a structural analysis method based on an analytical solution from the Fourier series which transforms a half-range cosine expansion into a static solution involving plated structures. Two sub-matrices of in-plane and plate-bending problems are also formulated and coupled with the prescribed boundary conditions for these variables, thereby providing a convenient basis for a numerical solution. In addition, the plate connection are introduced by describing the connection between common boundary continuity and equilibrium. Moreover, a simple computation scheme is proposed. Numerical results are then compared with finite element results, demonstrating the numerical scheme's versatility and accuracy.

NUMERICAL STUDY ON HEAT TRANSFER CHARACTERISTICS FOR RING TYPE HEAT EXCHANGER (링형 열교환기의 열전달특성에 관한 수치적 연구)

  • Dong, W.R.;Choi, H.K.;Yoo, G.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.143-147
    • /
    • 2008
  • Numerical analysis is performed to find flow and heat transfer characteristics for ring type heat exchanger. 3-D numerical predictions are carried out for the ring type heat exchanger system with Reynolds number varying in the range of 1,000 and 10,000. From the prediction, streamwise velocity, pressure drop, flow rate and heat transfer coefficient are analyzed. It is also found that characteristics of pressure drop and heat transfer generally follow well proportional variations of Re$m^$for the wide range of Reynolds number considered in this study.

  • PDF

DFSS OPTIMUM DESIGN OF LOW NOISE COOLING FAN FOR AN ALTERNATOR BY NUMERICAL METHOD (수치기법을 이용한 저소음 얼터네이터 냉각팬의 DFSS 최적 설계)

  • Kim, W.;Jeon, W.H.;Hyun, J.J.;Lim, C.K.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.233-238
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and Flow Noise are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF

DFSS OPTIMUM DESIGN OF LOW NOISE COOLING FAN FOR AN ALTERNATOR BY NUMERICAL METHOD (수치기법을 이용한 저소음 얼터네이터 냉각팬의 DFSS 최적 설계)

  • Kim, W.;Jeon, W.H.;Hyun, J.J.;Lim, C.K.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.233-238
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and Flow Noise are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF

Numerical Simulation of Flows Past Two Spheres (I) -Two Spheres Aligned in the Streamwise Direction- (2개의 구를 지나는 유동에 대한 수치 해석적 연구 (I) -유동방향으로 놓여진 2개의 구-)

  • Yoon Dong-Hyeog;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.247-254
    • /
    • 2005
  • A parametric study on the interactions of two spheres aligned in the streamwise direction is carried out using an immersed boundary method. The numerical results for the case of single sphere for the range of $Rs{\le}300$ are in good agreement with other authors' experimental and numerical results currently available. Then, our main investigation is focused on identifying the change of the vortical structures in the presence of a nearby sphere aligned in the streamwise direction for the range $Re{\le}300$. It turns out that significant changes in physical characteristics are noticed depending on how close the two spheres are. In this paper, not only quantitative changes in the key physical parameters such as the force coefficients, but also qualitative changes in vortex structures are reported and analyzed.