• Title/Summary/Keyword: numerical processes

Search Result 1,132, Processing Time 0.029 seconds

A Review of Numerical Simulation Methods for Molding Processes of Plastic Microstructures (플라스틱 미세구조 성형 해석기술 리뷰)

  • Park, Jang Min;Cha, Kyoung Je
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.14-20
    • /
    • 2015
  • Molding technologies for plastic microstructures have been extensively investigated during the last two decades, and theoretical and numerical studies on the micro molding process have provided efficient tools for the development of such molding technologies. In this paper, we present a review of numerical simulation methods for the micro molding process. Basic models for a description of the material property, governing equations of the flow and heat transfer during the molding process, and numerical methods will be described. Particularly, numerical simulations for micro injection molding and hot embossing processes will be presented, and their main features noted and compared to those for conventional molding processes.

Transprt Phenomena in Bulk Crystal Growth Processes

  • Lan, C.W.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.29-33
    • /
    • 1998
  • Transport phenomena paly an inmportant role in bulk crystal growth processes. During crystal growth, the control of the growth front and the dopant concentration is crucial to crystal quality. The growth feasibility in thus determined by the heat transfer controlling the interface convexity and by the mass transfer controlling the constitutional supercooling. Through numerical modeling, a thorough understanding of the growth processes is possible, which in turn is a key to process improvenment. In this paper, we will summarize some work dine in my laboratory, both numerical and experimental, to illustrate the importance of understanding the transport phenomena during crystal growth processes.

  • PDF

Numerical Models of Wave-Induced Currents

  • Yoo, Dong-hoon
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.73-97
    • /
    • 1990
  • A literature review is made on the numerical models of wave-induced currents. The major processes of the flow system are wave breaking, bottom friction of combined wave-current flow and mixing processes primarily caused by wave breaking as well as the flow fields of waves and currents themselves. The survey is given to each item with great emphasis on numerical implication as well as physical mechanism. As noted is the importance in recent investigations, a brief treatment is also given on the currents driven by random or spectral waves.

  • PDF

Numerical Study on the Characteristics of Spray Combustion Processes in the DME and n-heptane Fueled Diesel-like Engine Conditions (DME 및 n-Heptane 연료의 디젤엔진 조건에서 분무연소특성 해석)

  • Yu, Yong-Wook;Suk, Jun-Ho;Lee, Sang-Kil;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • In the present study, in order to understand the overall spray combustion characteristics of DME fuel as well as to identify the distinctive differences of DME combustion processes against the conventional hydrocarbon liquid fuels, the sequence of the comparative analysis have been systematically made for DME and n-heptane liquid fuels. To realistically represent the physical processes involved in the spray combustion, this studyemploys the hybrid breakup model, the stochastic droplet tracking model, collision model, high-pressure evaporation model, and transient flamelet model with detailed chemistry. Based on numerical results, the detailed discussions are made in terms of the autoignition, spray combustion processes, flame structure, and turbulence-chemistry interaction in the n-heptane and DME fueled spray combustion processes.

  • PDF

Review on Methods of Hydro-Mechanical Coupled Modeling for Long-term Evolution of the Natural Barriers

  • Chae-Soon Choi;Yong-Ki Lee;Sehyeok Park;Kyung-Woo Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.429-453
    • /
    • 2022
  • Numerical modeling and scenario composition are needed to characterize the geological environment of the disposal site and analyze the long-term evolution of natural barriers. In this study, processes and features of the hydro-mechanical behavior of natural barriers were categorized and represented using the interrelation matrix proposed by SKB and Posiva. A hydro-mechanical coupled model was evaluated for analyzing stress field changes and fracture zone re-activation. The processes corresponding to long-term evolution and the hydro-mechanical mechanisms that may accompany critical processes were identified. Consequently, practical numerical methods could be considered for these geological engineering issues. A case study using a numerical method for the stability analysis of an underground disposal system was performed. Critical stress distribution regime problems were analyzed numerically by considering the strata's movement. Another case focused on the equivalent continuum domain composition under the upscaling process in fractured rocks. Numerical methods and case studies were reviewed, confirming that an appropriate and optimized modeling technique is essential for studying the stress state and geological history of the Korean Peninsula. Considering the environments of potential disposal sites in Korea, selecting the optimal application method that effectively simulates fractured rocks should be prioritized.

Numerical Modelling of the Adjustment Processes of Minning Pit in the Dredged Channels (수치모의를 이용한 준설하천의 웅덩이 적응에 관한 연구)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.921-932
    • /
    • 2010
  • In this study, the adjustment processes of the disturbed channels by sand or gravel mining were investigated by a two dimensional numerical model in the generalized coordinate system. As a numerical scheme, the CIP (cubic interpolated pseudoparticle method) method was used to calculate the advection term in the flow field and central difference method was used to the diffusion term in it. The pit of the channel was partially filled with sediment at the toe of the pit upstream. As time increased, the headcut erosion upstream in the pit was decreased due to the sediment inflow. The almost inflow sediment upstream was trapped into the pit and the sediment deposit wedge migrated downstream in the pit with the steep submerged angle of repose. The numerical model was reproduced well the evolution processes of the channel. The mining pit migrated with speed as the channel was steep, and the numerical results were in overall agreement with the experimental results.

Numerical analysis on the starting processes of the unsteady flow field in the Ludwieg tube with a quiet nozzle

  • Shen, Junmou;Lin, Jian;Gong, Jian;Li, Ruiqu
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.62-66
    • /
    • 2015
  • The starting processes of the Ludwieg tube hypersonic quiet tunnel plays very important role in the achievement of the quiet flow in the test section, which could affect the confidence coefficient of the data in the hypersonic transition experimental investigations. Thus, numerical analysis on that processes could help to understanding the running mode of the Ludwieg tube quiet tunnel and the propagation principle of the expansion wave series. To verify our computational method, the same parameter of the BAM6QT (the Boeing/AFOSR Mach-6 quiet tunnel at Purdue University) is used to compute, and it is agrees with our computational results.

Numerical modelling of springback behavior in folding process

  • Serier, Mohamed;Bendaoudi, Seif-Eddine;Mansour, DJazia-Leila Ben;Tabti, Affaf
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2019
  • Through experimental and numerical studies of metal forming processes by plastic deformation, this paper represents a numerical simulation by finite element of the mechanical behavior of the material during a permanent deformation phenomenon. The main interest of this study is to optimize the shaping processes such as folding. In this context the elastic return for the folding process has been further reduced by using the design of experiments approach. In this analysis, it is proposed to consider the following factors: bending radius, metal-sheet thickness, gap and length of the fold.

Numerical Analysis for Cooling and Freezing Processes with Subcooling (과냉각을 동반한 동결과정의 수치해석)

  • Yoon, J.I.;Kim, J.D.;Kim, S.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.451-462
    • /
    • 1996
  • In this study, which focuses on ice storage, a fundamental study in cooling and solidification was performed, including the interesting phenomena of density inversion, supercooling and dendritic ice. A numerical study was performed for natural convection and ice formation considering existence of subcooling and dendritic ice were analyzed numerically by using finite difference method and boundary fixing method. In the mesh, the solid fraction was introduced with adding as a term to the energy conservation equation. A flow in the dendrite was modelled as a flow in a porous medium, and the momentum conservation equation was modified to incorporate resistance forces involved in flows through porous media. A numerical solution of the time dependencies of dendrite area and dense ice front was successfully obtained, and the numerical results were good agreement with experimental results. Based on this methodology, a discussion was made of phenomena and characteristics of cooling and freezing processes under various conditions.

  • PDF

Numerical Studies on Vaporization Characterization and Combustion Processes in High-Pressure Fuel Sprays (고압 상태에서의 연료 분무의 증발 및 연소 특성 해석)

  • Moon, Y.W.;Kim, Y.M.;Kim, S.W.;Kim, J.Y.;Yoon, I.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.49-59
    • /
    • 1998
  • The vaporization characteristics and spray combustion processes in the high-pressure environment are numerically investigated. This study employ the high-pressure vaporization model together with the state-of-art spray submodels. The present high-pressure vaporization model can account for transient liquid heating, circulation effect inside the droplet forced convection, Stefan flow effect, real gas effect and ambient gas solubility in the liquid droplets. Computations are carried out for the evaporating sprays, the evaporating and burning sprays, and the spray combustion processes of the turbocharged diesel engine. Numerical results indicate that the high-pressure effects are quite crucial for simulating the spray combustion processes including vaporization, spray dynamics, combustion, and pollutant formation.

  • PDF