• 제목/요약/키워드: numerical parametric study

검색결과 1,013건 처리시간 0.021초

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

지반조건, 굴착특성 및 지층구성을 고려한 터널굴착 유발 지반변위 거동분석 (Analysis of Ground Movements due to Tunnel Excavation Considering Ground Conditions, Excavation Characteristics, and Ground Layer Formations)

  • 손무락;윤종철
    • 대한토목학회논문집
    • /
    • 제29권5C호
    • /
    • pp.239-250
    • /
    • 2009
  • 본 논문에서는 지반의 지반조건, 굴착특성 및 지층구성을 고려한 터널굴착 유발 주변지반의 침하 및 수평변위에 대한 거동특성을 수치해석적 방법으로 조사하였다. 이를 위해서 먼저 지반변위 예측방법에 관한 관련 사례조사 및 문제점분석을 수행하고, 이를 바탕으로 한 수치해석적 매개변수연구를 수행하였다. 이러한 사례조사의 분석결과는 지반조건에 따른 주변 지반변위의 특성을 일차적으로 파악하기 위해 이용되며, 또한 기존방법의 문제점을 파악함과 동시에 수치해석적 매개변수연구를 위한 기초자료로서 활용된다. 수치해석적 매개변수연구는 먼저 굴착유발 주변 지반변위 계측이 신뢰성 있게 측정된 사례를 토대로 시뮬레이션을 실시하여 수치해석상 필요한 접근방법 및 적합한 지반모델을 설정하고, 이를 토대로 지반조건, 굴착 특성 및 지층구성을 달리한 매개변수 연구를 수행하였다. 이러한 과정을 수행한 후 굴착으로 인한 주변지반의 침하 및 수평 지반변위가 변해가는 과정을 종합적으로 분석하여 그 거동을 파악하였다.

단일심정 지열히트펌프의 수치적 모델링 Part II: 단일심정 지열히트펌프의 성능평가를 위한 매개변수 연구 (Numerical Simulation of Standing Column Well Ground Heat Pump System Part II: Parametric Study for Evaluation of the Performance of Standing Column Well)

  • 박두희;김광균;곽동엽;장재훈;나상민
    • 한국지반공학회논문집
    • /
    • 제26권2호
    • /
    • pp.45-54
    • /
    • 2010
  • 본 논문에서는 동반논문에서 구축된 수치해석 모델을 이용하여 SCW의 성능을 평가하기 위한 매개변수연구를 수행하였다. 매개변수연구에는 공극률, 투수계수, 열전도도, 비열, 지열경사 등 5개의 지반환경변수와 유량, 심정심도, 심정직경, 유입관 직경, 블리딩율의 설계변수가 적용되었다. 수치해석은 24시간 연속가동과 가동 중지를 반복하는 14일간의 가동 두 가지로 수행되었다. 해석결과 SCW 성능에 중요한 영향을 미치는 변수는 열전도도, 수리전도도, 지열경사, 유량, 심정 심도, 블리딩율인 것으로 나타났다. 열전도도가 높을수록 SCW의 효율이 향상되는 것으로 나타났다. 지열경사가 클수록 심정 저부의 온도가 증가하여 난방모드에서는 효율이 향상되지만, 냉방모드에서는 유입수의 온도가 증가하여 오히려 효율이 감소하는 것으로 나타났다. 수리전도도도는 $10^{-4}m/s$ 이상일 경우에는 큰 영향을 미칠 수 있으나 $10^{-6}m/s$ 이하에서는 영향이 적은 것으로 나타났다. 심정심도가 증가할수록 SCW의 효율이 향상되는 것으로 나타났지만 심정심도를 높일수록 시공비가 증가하게 된다. 블리딩을 적용하며 추가적인 비용 없이 심정온도를 조절할 수 있으며 성능을 향상시킬 수 있는 매우 효과적인 방법인 것으로 나타났다. 단, 블리딩은 유출수를 배출할 공간이 확보되며 지하수량이 풍부한 경우에만 적용할 수 있다. 본 매개변수 연구결과, SCW의 성능에 영향을 미치는 요소는 매우 다양하며 이들의 복합적인 영향을 정확하게 규명하기 위해서는 수치적 모델을 수행해야 할 필요가 있는 것으로 나타났다.

매개변수 종속 최적화에서 최대치형 목적함수 처리에 관한 연구 (A study on the treatment of a max-value cost function in parametric optimization)

  • 김민수;최동훈
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1561-1570
    • /
    • 1997
  • This study explores the treatment of the max-value cost function over a parameter interval in parametric optimization. To avoid the computational burden of the transformation treatment using an artificial variable, a direct treatment of the original max-value cost function is proposed. It is theoretically shown that the transformation treatment results in demanding an additional equality constraint of dual variables as a part of the Kuhn-Tucker necessary conditions. Also, it is demonstrated that the usability and feasibility conditions on the search direction of the transformation treatment retard convergence rate. To investigate numerical performances of both treatments, typical optimization algorithms in ADS are employed to solve a min-max steady-state response optimization. All the algorithm tested reveal that the suggested direct treatment is more efficient and stable than the transformation treatment. Also, the better performing of the direct treatment over the transformation treatment is clearly shown by constrasting the convergence paths in the design space of the sample problem. Six min-max transient response optimization problems are also solved by using both treatments, and the comparisons of the results confirm that the performances of the direct treatment is better than those of the tranformation treatment.

Experimental and numerical study of one-sided branch plate-to-circular hollow section connections

  • Hassan, M.M.;Ramadan, H.;Abdel-Mooty, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.877-895
    • /
    • 2015
  • Connections to circular hollow steel sections (CHS) are considered one of the most complex and time consuming connections in steel construction. Such connections are usually composed of gusset plates welded to the outside of the steel tube or penetrating the steel tube. Design guides, accounting for the effect of connection configuration on the strength of the connection, are not present. This study aims to investigate, through experimental testing and a parametric study, the influence of connection configuration on the strength of one sided branch plate-to-CHS members. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution. A parametric study is performed using the calibrated analytical model to include a wider range of parameters. The study involves 26 numerical analyses of finite element models including parameters of the diameter-to-thickness (D/t) ratio, length of gusset plate, and connection configuration. Accordingly, a modification to the formulas provided by the current design recommendations was suggested to include connection configuration effects for the one sided branch plate-to-CHS members.

Design approach for a FRP structural formwork based steel-free modular bridge system

  • Cheng, Lijuan;Karbhari, Vistasp M.
    • Structural Engineering and Mechanics
    • /
    • 제24권5호
    • /
    • pp.561-584
    • /
    • 2006
  • The paper presents results of parametric studies, and an overall approach for the design of a modular bridge system which incorporates a steel-reinforcement free concrete slab cast on top of carbon FRP stiffened deck panels which act as both structural formwork and flexural reinforcement, spanning between hollow box type FRP girders. Results of the parametric studies are highlighted to elucidate important relationships between critical configurational parameters and empirical equations based on numerical studies are presented. Results are discussed at the level of the individual deck and girder components, and as a slab-on-girder bridge system. An overall design methodology for the components and bridge system including critical performance checks is also presented.

병설터널 굴착시 필라부의 보강을 고려한 안정성 평가기법 (Stability Estimation Method for Pillar Considering the Reinforcement Method during Twin-Tunnel Excavation)

  • 장부식;황정순;류준원;이응기;김홍택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.980-987
    • /
    • 2006
  • Recently, twin-tunnel is often designed considering the aspects of disaster prevention and economic reasons. However, the design cases and the studies are relatively insufficient. By the twin-tunnel excavation, deviate stresses of pillar between tunnels are increased and the increased stresses induce the instability of the twin-tunnel. In this study, numerical analyses about the twin-tunnel behaviour are conducted while varying ground strength, width of pillar and depth of earth cover and a series of regression analyses are carried out by using the results of numerical analyses for the twin-tunnel. Based on the numerical analyses, an estimation method of derived stresses is suggested though the regression analyses. Also, based on the results of regression analyses, an quantitative estimation method considering the reinforcement effects is also suggested. Then various parametric studies are conducted to be considered the reinforcement type and various design parameters. Finally, the efficiency of the suggested method is verified through the results of parametric studies.

  • PDF

Non-constant biaxial bending capacity assessment of CFST columns through interaction diagrams

  • Espinos, Ana;Albero, Vicente;Romero, Manuel L.;Mund, Maximilian;Meyer, Patrick;Schaumann, Peter
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.521-536
    • /
    • 2019
  • The mechanical response of concrete-filled steel tubular (CFST) columns subjected to pure compression or uniaxial bending was studied in depth over the last decades. However, the available research results on CFST columns under biaxial bending are still scarce and the lack of experimental tests for this loading situation is evident. At the same time, the design provisions in Eurocode 4 Part 1.1 for verifying the stability of CFST columns under biaxial bending make use of a simplistic interaction curve, which needs to be revised. This paper presents the outcome of a numerical investigation on slender CFST columns subjected to biaxial bending. Eccentricities differing in minor and major axis, as well as varying end moment ratios are considered in the numerical model. A parametric study is conducted for assessing the current design guidelines of EN1994-1-1. Different aspect ratios, member slenderness, reinforcement ratios and load eccentricities are studied, covering both constant and variable bending moment distribution. The numerical results are subsequently compared to the design provisions of EN1994-1- 1, showing that the current interaction equation results overly conservative. An alternative interaction equation is developed by the authors, leading to a more accurate yet conservative proposal.

연소기에서의 다단 저 NOx 버너의 수치 및 실험적 연구 (Numerical & Experimental Study For Burner of Low NOx Formation of Multi-Stage In a Combustor)

  • 최윤기;강경태;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.65-74
    • /
    • 2003
  • Air pollution included Nitric Oxide(NOx) from heating boilers is increased by pursuing better life. Development of low NOx emission boiler is strongly needed. However commercial burner for heating boiler is also asked to be thermal efficient and low-cost manufactuable in addition to low NOx emission. Small space for combustor including burner is usually allowed. In this study, parametric study of compact low NOx burner for heating boiler was done using numerical analysis and experiments. Commerical computational fluid dynamic(CFD) program named CFX 5-6 was used for numerical analysis of low NOx burner using turbulent diffusion flame. Comparison of outlet NO and outlet temperature under various equivalence ratio and fuel flow rate was performed between experiment and numerical analysis.

  • PDF

유한변형율(有限變形率) 압밀이론(壓密理論)에 의한 연약(軟弱) 점토(粘土)의 -차원(次元) 압밀(壓密)에 관한 수치(數値) 해석적(解析的) 연구 (A Numerical Study on One-Dimensional Consolidation of Soft Clay with Finite Strain Consolidation Theory)

  • 유남재;정윤화;이명욱
    • 산업기술연구
    • /
    • 제11권
    • /
    • pp.85-98
    • /
    • 1991
  • A numerical study was performed to investigate characteristics of one-dimensional consolidation of soft clay. Results of consolidation tests with the remolded normally consolidation clay of having a very high initial void ratio were analyzed by using the numerical technique of finite difference method based on the finite strain consolidation theory, to evaluate consolidational characteristics of soft clay under surcharges on the top of clay. On the other hand, a numerical parametric study on soft clay consolidated due to its self-weight was also carried out to find its effect on one-dimensional consolidation. Terzaghi's conventional consolidation theory, finite strain consolidation theories with linear and non-linear interpolation of effective stress - void ratio - permeability relation were used to analyze the test results and their results were compared to each other to figure out the difference between them. Therefore, the validity of theories was assessed.

  • PDF