DOI QR코드

DOI QR Code

Non-constant biaxial bending capacity assessment of CFST columns through interaction diagrams

  • Espinos, Ana (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia) ;
  • Albero, Vicente (Department of Mechanical Engineering and Construction, Universitat Jaume I) ;
  • Romero, Manuel L. (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia) ;
  • Mund, Maximilian (Institute for Steel Construction, Leibniz Universitaet Hannover) ;
  • Meyer, Patrick (Institute for Steel Construction, Leibniz Universitaet Hannover) ;
  • Schaumann, Peter (Institute for Steel Construction, Leibniz Universitaet Hannover)
  • Received : 2019.03.27
  • Accepted : 2019.07.31
  • Published : 2019.08.25

Abstract

The mechanical response of concrete-filled steel tubular (CFST) columns subjected to pure compression or uniaxial bending was studied in depth over the last decades. However, the available research results on CFST columns under biaxial bending are still scarce and the lack of experimental tests for this loading situation is evident. At the same time, the design provisions in Eurocode 4 Part 1.1 for verifying the stability of CFST columns under biaxial bending make use of a simplistic interaction curve, which needs to be revised. This paper presents the outcome of a numerical investigation on slender CFST columns subjected to biaxial bending. Eccentricities differing in minor and major axis, as well as varying end moment ratios are considered in the numerical model. A parametric study is conducted for assessing the current design guidelines of EN1994-1-1. Different aspect ratios, member slenderness, reinforcement ratios and load eccentricities are studied, covering both constant and variable bending moment distribution. The numerical results are subsequently compared to the design provisions of EN1994-1- 1, showing that the current interaction equation results overly conservative. An alternative interaction equation is developed by the authors, leading to a more accurate yet conservative proposal.

Keywords

References

  1. ABAQUS (2014), Abaqus/Standard Version 6.14 User's Manual: Volumes I-III; Pawtucket, Rhode Island: Hibbit, Karlsson & Sorensen, Inc.
  2. Albero, V., Espinos, A., Romero, M.L., Hospitaler, A., Bihina, G. and Renaud, C. (2016), "Proposal of a new method in EN1994-1-2 for the fire design of concrete-filled steel tubular columns", Eng. Struct., 128, 237-255. https://doi.org/10.1016/j.engstruct.2016.09.037
  3. Anderson, D. (1992), "Calibration of composite columns: Eurocode 4 and British practice", Report to Building Research Establishment. Department of Environment.
  4. Bonet, J.L., Miguel, P.F., Fernandez, M.A. and Romero, M.L. (2004), "Analytical approach to failure surfaces in reinforced concrete sections subjected to axial loads and biaxial bending", J. Struct. Eng., 130(12), 2006-2015. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(2006)
  5. Bresler, B. (1960), "Design criteria for reinforced columns under axial load and biaxial bending", J. Am. Concrete Inst., 32(5), 481-490.
  6. CEN (2004a), EN 1992-1-1, Eurocode 2: Design of concrete structures. Part 1-1: General rules and rules for buildings, Comite Europeen de Normalisation, Brussels, Belgium.
  7. CEN (2004b), EN 1994-1-1, Eurocode 4: Design of composite steel and concrete structures. Part 1-1: General rules and rules for buildings, Comite Europeen de Normalisation, Brussels, Belgium.
  8. CEN (2005), EN 1993-1-1, Eurocode 3: Design steel structures. Part 1-1: General rules and rules for buildings, Comite Europeen de Normalisation, Brussels, Belgium.
  9. Dundar, C. and Tokgoz, S. (2012), "Strength of biaxially loaded high strength reinforced concrete columns", Struct. Eng. Mech., Int. J., 44(5), 649-661. https://doi.org/10.12989/sem.2012.44.5.649
  10. Dundar, C., Tokgoz, S., Tanrikulu, A.K. and Baran, T. (2008), "Behaviour of reinforced and concrete-encased composite columns subjected to biaxial bending and axial load", Buildi. Environ., 43(6), 1109-1120. https://doi.org/10.1016/j.buildenv.2007.02.010
  11. Espinos, A., Romero, M.L. and Hospitaler, A. (2010), "Advanced model for predicting the fire response of concrete filled tubular columns", J. Constr. Steel. Res., 66(8-9), 1030-1046. https://doi.org/10.1016/j.jcsr.2010.03.002
  12. Espinos, A., Albero, V., Romero, M.L., Mund, M., Kleiboemer, I., Meyer, P. and Schaumann, P. (2018), "Numerical investigation on slender concrete-filled steel tubular columns subjected to biaxial bending", Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures (ASCCS 2018), Valencia, Spain.
  13. FIB (2010), Model Code 2010 (Volume 1), FIB, Lausanne, Switzerland.
  14. Goode, C.D. and Lam, D. (2008), "Concrete-filled steel tube columns-Test compared with Eurocode 4", Composite Construction VI, Devil's Thumb Ranch, CO, USA, July.
  15. Guo, L.H., Wang, Y.Y. and Zhang, S.M. (2012), "Experimental study of concrete-filled rectangular HSS columns subjected to biaxial bending", Adv. Struct. Eng., 15(8), 1329-1344. https://doi.org/10.1260/1369-4332.15.8.1329
  16. Han, L.-H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016
  17. Hernandez-Figueirido, D., Romero, M.L., Bonet, J.L. and Montalva, J.M. (2012a), "Ultimate capacity of rectangular concrete-filled steel tubular columns under unequal load eccentricities", J. Constr. Steel Res., 68(1), 107-117. https://doi.org/10.1016/j.jcsr.2011.07.014
  18. Hernandez-Figueirido, D., Romero, M.L., Bonet, J.L. and Montalva, J.M. (2012b), "Influence of slenderness on high-strength rectangular concrete-filled tubular columns with axial load and nonconstant bending moment", J. Struct. Eng., 138(12), 1436-1445. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000590
  19. Leite, L.C., Bonet, J.L., Pallares, L. and Miguel, P.F. (2014), "Cm-factor for RC slender columns under unequal eccentricities and skew angle loads at the ends", Eng. Struct., 71, 73-87. https://doi.org/10.1016/j.engstruct.2014.04.020
  20. Leon, R.T., Perea, T., Hajjar, J.F. and Denavit, M.D. (2011), Concrete-filled tubes columns and beam-columns: a database for the AISC 2005 and 2010 specifications, Institute fur Konstruktiven Ingenieurbau (IKIB), Bergische Universitat Wuppertal, Wuppertal, Germany.
  21. Li, G., Yang, Z., Lang, Y. and Fang, C. (2016), "Behavior of CFST columns with inner CFRP tube under biaxial eccentric loading", Steel Compos. Struct., Int. J., 22(6), 1487-1505. https://doi.org/10.12989/scs.2016.22.6.1487
  22. Liang, Q.Q. (2008), "Nonlinear analysis of short concrete-filled steel tubular beam-columns under axial load and biaxial bending", J. Constr. Steel Res., 64(3), 295-304. https://doi.org/10.1016/j.jcsr.2007.07.001
  23. Liang, Q.Q. (2015), Analysis and Design of Steel and Composite Structures, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA.
  24. Liang, Q.Q., Patel, V.I. and Hadi, M.N.S. (2012), "Biaxially loaded high-strength concrete-filled steel tubular slender beam-columns, Part I: Multiscale simulation", J. Constr. Steel. Res., 75, 64-71. https://doi.org/10.1016/j.jcsr.2012.03.005
  25. MathWorks (2016), MATLAB, Natick, Massachusetts USA.
  26. Matsui, C., Tsuda, K. and Ishibashi, Y. (1995), "Slender concrete filled steel tubular columns under combined compression and bending", Proceedings of the 4th Pacific Structural Steel Conference, Singapore.
  27. O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thin-walled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
  28. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2012a), "High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part I: Modeling", J. Constr. Steel. Res., 70, 377-384. https://doi.org/10.1016/j.jcsr.2011.10.019
  29. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2012b), "High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part II: Behavior", J. Constr. Steel. Res., 70, 368-376. https://doi.org/10.1016/j.jcsr.2011.10.021
  30. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2014), "Behavior of biaxially-loaded rectangular concrete-filled steel tubular slender beam-columns with preload effects", Thin-Wall. Struct., 79, 166-177. https://doi.org/10.1016/j.tws.2014.02.013
  31. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2015), "Biaxially loaded high-strength concrete-filled steel tubular slender beam-columns, part II: Parametric study", J. Constr. Steel. Res., 110, 200-207. https://doi.org/10.1016/j.jcsr.2012.03.029
  32. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2017), "Nonlinear analysis of biaxially loaded rectangular concrete-filled stainless steel tubular slender beam-columns", Eng. Struct., 140, 120-133. https://doi.org/10.1016/j.engstruct.2017.02.071
  33. Perea, T., Leon, R.T., Hajjar, J.F. and Denavit, M.D. (2013), "Full-scale tests of slender concrete-filled tubes: axial behavior ", J. Struct. Eng., 139(7), 1249-1262. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000784
  34. Perea, T., Leon, R.T., Hajjar, J.F. and Denavit, M.D. (2014), "Full-scale tests of slender concrete-filled tubes: Interaction behavior", J. Struct. Eng., 140(9), 04014054. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000949
  35. Tokgoz, S. and Dundar, C. (2008), "Experimental tests on biaxially loaded concrete-encased composite columns", Steel Compos. Struct., Int. J., 8(5), 423-438. https://doi.org/10.12989/scs.2008.8.5.423
  36. Tokgoz, S. and Dundar, C. (2010), "Experimental study on steel tubular columns in-filled with plain and steel fiber reinforced concrete", Thin-Wall. Struct., 48(6), 414-422. https://doi.org/10.1016/j.tws.2010.01.009
  37. Tokgoz, S., Dundar, C. and Tanrikulu, A.K. (2012), "Experimental behaviour of steel fiber high strength reinforced concrete and composite columns", J. Constr. Steel. Res., 74, 98-107. https://doi.org/10.1016/j.jcsr.2012.02.017
  38. Wang, Y.C. (1999), "Tests on slender composite columns", J. Constr. Steel. Res., 49(1), 25-41. https://doi.org/10.1016/S0143-974X(98)00202-8
  39. Zhao, G.T., Zhang, M.X. and Li, Y.H. (2009), "Behavior of slender steel concrete composite columns in eccentric loading", J. Shanghai Univ. (English Edition), 13(6), 481. https://doi.org/10.1007/s11741-009-0611-2