• Title/Summary/Keyword: numerical oscillations

Search Result 209, Processing Time 0.119 seconds

Tethers tension force effect in the response of a squared tension leg platform subjected to ocean waves

  • El-gamal, Amr R.;Essa, Ashraf;Ismail, Ayman
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.327-342
    • /
    • 2014
  • The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy's linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark's beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e., 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.

Characteristics of Long Period Resonant Oscillations around Chukpyon Harbor (죽변항 수역의 장주기 수면진동 특성)

  • 정원무;박우선;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.193-203
    • /
    • 1996
  • Long period waves were measured at two stations outside and inside Chukpyon Harbor using two pressure-type wave gauges for one week that covers storm sea period. Based on the collected data the characteristics of long-period resonant oscillations were analysed: the resonant period corresponding to the peak spectral density are slightly different from one to the component wave period with the largest amplification ratio, and the latter period is suggested as that of the first resonant mode. From the analysed field data and numerical modeling, the first resonant mode of Chukpyon Harbor region appeared to be around 12 minutes with amplification ratio of 7, whose amplitude varies 10-20 cm inside of the harbour, and also the second mode appeared to be around 6 minutes. The waves of 2-3 minute periods were resonated apparently in the harbour, which is considered to be generated from group-bounded irregular waves and non-linear wave-wave interaction etc. The linearly decreasing reflection coefficients used in the numerical modeling appeared to be an alternative in calculating reflected waves in harbor.

  • PDF

A numerical simulation of propagating turbidity currents using the ULTIMATE scheme (ULTIMATE 기법을 이용한 부유사 밀도류 전파 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • This study presents a numerical model for simulating turbidity currents using the ULTIMATE scheme. For this, the layer-averaged model is used. The model is applied to laboratory experiments, where the flume is composed of sloping and flat parts, and the characteristics of propagating turbidity currents are investigated. Due to the universal limiter of the ULTIMATE scheme, the frontal part of the turbidity currents at a sharp gradient without numerical oscillations is computed. Simulated turbidity currents propagate super-critically to the end of the flume, and internal hydraulic jumps occur at the break-in-slope after being affected by the downstream boundary. It is found that the hydraulic jumps are computed without numerical oscillations if Courant number is less than 1. In addition, factors that affect propagation velocity of turbidity currents is studied. The particle size less than $9{\mu}m$ does not affect propagation velocity but the buoyancy flux affects clearly. Finally, it is found that the numerical model computes the bed elevation change due to turbidity currents properly. Specifically, a discontinuity in the bed elevation, arisen from the hydraulic jumps and resulting difference in sediment entrainment, is observed.

Finite Element Analysis of High-speed Rotating Disks Considering Impulsive Loading by the Clearance and Contact (간격 및 접촉에 의한 충격하중을 고려한 고속 회전 디스크의 유한요소 해석)

  • Lee, Kisu;Kim, Yeong Sul;So, Jae Uk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.45-53
    • /
    • 2014
  • For the time integration solution of the impulsive dynamic contact problem of high-speed rotating disks formulated by the finite element technique, the velocity and acceleration contact constraints as well as the displacement contact constraint are imposed for the numerical stability without spurious oscillations. The solution of the present technique is checked by the numerical simulation using the concentric high-speed rotating disks with the clearance and impulsive loading. It is shown that the almost steady state solution agrees with the corresponding analytical solution of the elasticity and that the differentiated constraints are crucial for the numerical stability of such high-speed contact problems of the disks under impulsive loading.

Unsteady Viscous Flow over Elliptic Cylinders At Various Thickness with Different Reynolds Numbers

  • Kim Moon-Sang;Sengupta Ayan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.877-886
    • /
    • 2005
  • Two-dimensional incompressible Navier-Stokes equations are solved using SIMPLER method in the intrinsic curvilinear coordinates system to study the unsteady viscous flow physics over two-dimensional ellipses. Unsteady viscous flows over various thickness-to-chord ratios of 0.6, 0.8, 1.0, and 1.2 elliptic cylinders are simulated at different Reynolds numbers of 200, 400, and 1,000. This study is focused on the understanding the effects of Reynolds number and elliptic cylinder thickness on the drag and lift forces. The present numerical solutions are compared with available experimental and numerical results and show a good agreement. Through this study, it is observed that the Reynolds number and the cylinder thickness affect significantly the frequencies of the force oscillations as well as the mean values and the amplitudes of the drag and lift forces.

Secondary Steady Flows Due to the Small-Amplitude In-Phase Oscillation of Multi-Cylinders (다수의 주상체들의 저진폭 동위상 진동에 의한 2차 정상유동 해석)

  • Kim, Seong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.649-658
    • /
    • 1996
  • Small-amplitude harmonic oscillations of multi-cylinders are considered both experimentally and theoretically. For the theoretical model, the flow regime is separated into inner and outer regions. In the inner region, the flow is governed by the generalized Stokes boundary layer equation. In the outer region, the full Navier-Stokes equation for the steady streaming flow is solved numerically by using ADI scheme and FVM coupled with the boundary integral method. Flow visualization experiments are conducted by using the Laser Sheet Image Technique. The case of two circular cylinders and square cylinders with variable distances are chosen as a typical example. Although experimental results are based on the flow in the finite domain, both experimental and numerical results agree well qualitatively. As the separation of cylinders is increased, a numerical result shows the asymptotic convergence to a single cylinder case.

A Nonlinear Theory for the Oregonator Model with an External Input

  • Ryu Moon Hee;Lee Dong J.;Lee Sangyoub;Shin Kook Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.488-496
    • /
    • 1994
  • An approximate nonlinear theory of the Oregonator model is obtained with the aid of an ordinary perturbation method when the system is perturbed by some kinds of external input. The effects of internal and external parameters on the oscillations are discussed in detail by taking specific values of the parameters. A simple approximate solution for the Oregonator model under the influence of a constant input is obtained and the result is compared with the numerical result. For other types of external inputs the approximate solutions up to the fourth order expansion are compared with the numerical results. For a periodic input, we found that the entrainment depends crucially on the difference between the internal and external frequencies near the bifurcation point.

Research on improvement measures of Harbor tranquility in Geumjin Fishing Port Excited by Incident Short Random Waves (단주기 불규칙파에 의한 금진항 정온도 개선대책 연구)

  • Chang, Sung-Yeol;Moon, Yong-Ho;Park, Won-Kyung
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Most of the short period waves are blocked by the breakwaters when the short period irregular waves propagate into the ports. However, nonlinear irregular wave numerical experiments show that the long waves generated by the nonlinear interaction is predominant in the port. Seiches phenomenon in Geumjin Fishing Port is very similar to 60 and 300 second harbor oscillations. By arranging the inner breakwater of the proper length in the inside of the port, it is possible to effectively reduce seiches, as well as the short-period wave, and significantly improve the harbor tranquility. In the case of rectangular basin type such as the Geumjin Fishing Port, the multi-directional irregular wave numerical model should be used for the investigation and countermeasures for the harbor tranquility.

Flow models of fluidized granular masses with different basal resistance terms

  • Wu, Hengbin;Jiang, Yuanjun;Zhang, Xuefu
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.811-828
    • /
    • 2015
  • Proper modelling of the basal resistance terms is key in simulating the motion of fluidized granular flow. In this paper, standard depth-averaged governing equations of granular flow are used together with the classical Coulomb, Voellmy, and velocity dependent friction models (VDFM). A high-resolution modified TVDLF method is implemented to solve the partial differential equations without numerical oscillations. The effects of basal resistance terms on the motion of granular flows such as geometric shape evolution, travel times and final deposits are analyzed. Based on the numerical results, the predictions of the front and rear end positions and developing length of granular flow with Coulomb friction model show excellent agreements with experiment results reported by Hutter et al. (1995), and illustrate the validity of the numerical approach. For the Voellmy model, the higher value of turbulent coefficient than reality may obtain more reasonable predicted runout for the small-scale avalanche or granular flow. The energy exchange laws indicate that VDFM is different from the Coulomb and Voellmy models, although the flow characteristics of both three models fit the measurements and observations very well.

Finite Element Analysis of Fluid Flows with Moving Boundary

  • Cha, Kyung-Se;Park, Jong-Wook;Park, Chan-Guk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.683-695
    • /
    • 2002
  • The objective of the present study is to analyze the fluid flow with moving boundary using a finite element method. The algorithm uses a fractional step approach that can be used to solve low-speed flow with large density changes due to intense temperature gradients. The explicit Lax-Wendroff scheme is applied to nonlinear convective terms in the momentum equations to prevent checkerboard pressure oscillations. The ALE (Arbitrary Lagrangian Eulerian) method is adopted for moving grids. The numerical algorithm in the present study is validated for two-dimensional unsteady flow in a driven cavity and a natural convection problem. To extend the present numerical method to engine simulations, a piston-driven intake flow with moving boundary is also simulated. The density, temperature and axial velocity profiles are calculated for the three-dimensional unsteady piston-driven intake flow with density changes due to high inlet fluid temperatures using the present algorithm. The calculated results are in good agreement with other numerical and experimental ones.