• 제목/요약/키워드: numerical optimization

검색결과 2,307건 처리시간 0.024초

A modified particle swarm approach for multi-objective optimization of laminated composite structures

  • Sepehri, A.;Daneshmand, F.;Jafarpur, K.
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.335-352
    • /
    • 2012
  • Particle Swarm Optimization (PSO) is a stochastic population based optimization algorithm which has attracted attentions of many researchers. This method has great potentials to be applied to many optimization problems. Despite its robustness the standard version of PSO has some drawbacks that may reduce its performance in optimization of complex structures such as laminated composites. In this paper by suggesting a new variation scheme for acceleration parameters and inertial weight factors of PSO a novel optimization algorithm is developed to enhance the basic version's performance in optimization of laminated composite structures. To verify the performance of the new proposed method, it is applied in two multi-objective design optimization problems of laminated cylindrical. The numerical results from the proposed method are compared with those from two other conventional versions of PSO-based algorithms. The convergancy of the new algorithms is also compared with the other two versions. The results reveal that the new modifications inthe basic forms of particle swarm optimization method can increase its convergence speed and evade it from local optima traps. It is shown that the parameter variation scheme as presented in this paper is successful and can evenfind more preferable optimum results in design of laminated composite structures.

근사모델 및 성공확률을 이용한 강건설계 (A Robust Design Using Approximation Model and Probability of Success)

  • 송병철;이권희
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.3-11
    • /
    • 2008
  • Robust design pioneered by Dr. G. Taguchi has been applied to versatile engineering problems for improving quality. Since 1980s, the Taguchi method has been introduced to numerical optimization, complementing the deficiencies of deterministic optimization, which is often called the robust optimization. In this study, the robust optimization strategy is proposed by considering the robustness of objective and constraint functions. The statistics of responses in the functions are surrogated by kriging models. In addition, objective and/or constraint function is represented by the probability of success, thus facilitating robust optimization. The mathematical problem and the two-bar design problem are investigated to show the validity of the proposed method.

  • PDF

고주파수대역에서 파워흐름해석법을 이용한 구조물의 설계민감도 해석과 위상최적설계 (Design Sensitivity Analysis and Topology Optimization Method for Power Flow Analysis at High Frequency)

  • 박찬영;박영호;조선호;홍석윤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.119-126
    • /
    • 2004
  • A continuum-based design sensitivity analysis and topology optimization methods are developed for power flow analysis. Efficient adjoint sensitivity analysis method is employed and further extended to topology optimization problems. Young's moduli of all the finite elements are selected as design variables and parameterized using a bulk material density function. The objective function and constraint are an energy compliance of the system and an allowable volume fraction, respectively. A gradient-based optimization, the modified method of feasible direction, is used to obtain the optimal material layout. Through several numerical examples, we notice that the developed design sensitivity analysis method is very accurate and efficient compared with the finite difference sensitivity. Also, the topology optimization method provides physically meaningful results. The developed is design sensitivity analysis method is very useful to systematically predict the impact on the design variations. Furthermore, the topology optimization method can be utilized in the layout design of structural systems.

  • PDF

휴대폰용 카메라 렌즈 시스템의 공차최적설계 (Tolerance Analysis and Optimization for a Lens System of a Mobile Phone Camera)

  • 정상진;최동훈;최병렬;김주호
    • 한국CDE학회논문집
    • /
    • 제16권6호
    • /
    • pp.397-406
    • /
    • 2011
  • Since tolerance allocation in a mobile phone camera manufacturing process greatly affects production cost and reliability of optical performance, a systematic design methodology for allocating optimal tolerances is required. In this study, we proposed the tolerance optimization procedure for determining tolerances that minimize production cost while satisfying the reliability constraints on important optical performance indices. We employed Latin hypercube sampling for evaluating the reliabilities of optical performance and a function-based sequential approximate optimization technique that can reduce computational burden and well handle numerical noise in the tolerance optimization process. Using the suggested tolerance optimization approach, the optimal production cost was decreased by 30.3 % compared to the initial cost while satisfying the two constraints on the reliabilities of optical performance.

헤링본 미세혼합기의 크리깅 모델을 사용한 최적형상설계 (Shape Optimization of A Micromixer with Herringbone Grooves Using Kriging Model)

  • 아매드 앤사리;김상용
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.711-717
    • /
    • 2007
  • Shape optimization of a staggered herringbone groove micromixer using three-dimensional Navier-Stokes analysis has been carried using Kriging model. The analysis of the degree of mixing is performed by the calculation of spatial data statistics. The calculation of the variance of the mass fraction at various nodes on a plane in the channel is used to quantify mixing. A numerical optimization technique with Kriging model is applied to optimize the shape of the grooves on a single wall of the channel. Three design variables, namely, the ratio of groove width to groove pitch, the ratio of the groove depth to channel height ratio and the angle of the groove, are selected for optimization. A mixing index is used as the objective function. The results of the optimization show that the mixing is very sensitive to the shape of the groove which can be used in controlling mixing in microdevices.

유용방향법 최적화 알고리즘을 사용한 고유진동수에 대한 구조 최적설계 FEA 모듈 개발 (Structure Optimization FEA Code Development Under Frequency Constraints by Using Feasible Direction Optimization Method)

  • 조희근
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.63-69
    • /
    • 2013
  • In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However in the most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleigh-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculates the optimal thickness and the thickness ratio of individual elements of the 2-D plane element through a parallel algorithm method which satisfy the design constraint of natural frequency. As a result this method of optimization for natural frequency by using finite element method can determine the optimal size or its ratio of geometrically complicated shape and large scale structure.

고체-유체 연성력 제어를 위한 진화적 최적설계 (Evolutionary Optimization Design Technique for Control of Solid-Fluid Coupled Force)

  • 김현수;이영신
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.503-506
    • /
    • 2005
  • In this study, optimization design technique for control of solid-fluid coupled force (sloshing) using evolutionary method is suggested. Artificial neural networks(ANN) and genetic algorithm(GA) is employed as evolutionary optimization method. The ANN is used to analysis of the sloshing and the genetic algorithm is adopted as an optimization algorithm. In the creation of ANN learning data, the design of experiments is adopted to higher performance of the ANN learning using minimum learning data and ALE(Arbitrary Lagrangian Eulerian) numerical method is used to obtain the sloshing analysis results. The proposed optimization technique is applied to the minimization of sloshing of the water in the tank lorry with baffles under 2 second lane change.

  • PDF

Colliding bodies optimization for size and topology optimization of truss structures

  • Kaveh, A.;Mahdavi, V.R.
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.847-865
    • /
    • 2015
  • This paper presents the application of a recently developed meta-heuristic algorithm, called Colliding Bodies Optimization (CBO), for size and topology optimization of steel trusses. This method is based on the one-dimensional collisions between two bodies, where each agent solution is considered as a body. The performance of the proposed algorithm is investigated through four benchmark trusses for minimum weight with static and dynamic constraints. A comparison of the numerical results of the CBO with those of other available algorithms indicates that the proposed technique is capable of locating promising solutions using lesser or identical computational effort, with no need for internal parameter tuning.

Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • 제14권3호
    • /
    • pp.283-293
    • /
    • 2013
  • This paper deals with the applicability of a new extended layerwise optimization method for thermal buckling load optimization of laminated composite plates. The design objective is the maximization of the critical thermal buckling of the laminated plates. The fibre orientations in the layers are considered as design variables. The first order shear deformation theory (FSDT) is used for the finite element solution of the laminates. Finally, the numerical analysis is carried out to show the applicability of extended layerwise optimization algorithm of laminated plates for different parameters such as plate aspect ratios and boundary conditions.

Topology optimization of multiphase elastic plates with Reissner-Mindlin plate theory

  • Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.249-257
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like elastic structures with constant thickness and Reissner-Mindlin plate theory. Stiffness and adjoint sensitivity formulations linked to Reissner-Mindlin plate potential energy of bending and shear are derived in terms of multiphase design variables. Multiphase optimization problem is solved through alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Numerical examples verify efficiency and diversity of the present topology optimization method of Reissner-Mindlin elastic plates depending on multiphase and Poisson's ratio.