• Title/Summary/Keyword: numerical optimization

Search Result 2,311, Processing Time 0.032 seconds

Optimization in Reliability Design with Lognormally Stress and Lognormally Strength (부하와 강도가 대수정규분포를 하는 신뢰성 설계에서 최적화에 관한 연구(II))

  • 김복만;황의철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.22
    • /
    • pp.25-34
    • /
    • 1990
  • This paper is to maximize the reliability subject to certain constraints on amounts of resources available for control of the parameters. The lagrange multiplier method is used to optimize t-th lognormal stress-lognormal strength problem. This optimization problem can be reduced to a search problem in one variable. A numerical example is presented to illustrate the optimization problem.

  • PDF

Optimal Design to minimize Eddy Current Loss of Structure Part in Electrical Machines using Topology Optimization (위상최적화를 이용한 전기기기 구조부의 와전류손을 줄이는 최적설계)

  • Lee, Heon;Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.655-656
    • /
    • 2008
  • This research presents a topology optimization to minimize eddy current loss maintaining mechanical robustness of structure part in electrical machines A design sensitivity equation for the topology optimization is derived by employing the discrete system equations combined with the adjoint variable method. As a numerical example, frame design of a C-core actuator is performed by the proposed method.

  • PDF

AN ADAPTIVE APPROACH OF CONIC TRUST-REGION METHOD FOR UNCONSTRAINED OPTIMIZATION PROBLEMS

  • FU JINHUA;SUN WENYU;SAMPAIO RAIMUNDO J. B. DE
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.165-177
    • /
    • 2005
  • In this paper, an adaptive trust region method based on the conic model for unconstrained optimization problems is proposed and analyzed. We establish the global and super linear convergence results of the method. Numerical tests are reported that confirm the efficiency of the new method.

A GLOBALLY AND SUPERLIEARLY CONVERGENT FEASIBLE SQP ALGORITHM FOR DEGENERATE CONSTRAINED OPTIMIZATION

  • Chen, Yu;Xie, Xiao-Liang
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.823-835
    • /
    • 2010
  • In this paper, A FSQP algorithm for degenerate inequality constraints optimization problems is proposed. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving a quadratic programming subproblem. To overcome the Maratos effect, a higher-order correction direction is obtained by solving another quadratic programming subproblem. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions. Finally, some preliminary numerical results are reported.

Network Congestion Control using Robust Optimization Design

  • Quang, Bui Dang;Shin, Sang-Mun;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11B
    • /
    • pp.961-967
    • /
    • 2008
  • Congestion control is one of major mechanisms to avoid dropped packets. Many researchers use optimization theories to find an efficient way to reduce congestion in networks, but they do not consider robustness that may lead to unstable network utilities. This paper proposes a new methodology in order to solve a congestion control problem for wired networks by using a robust design principle. In our particular numerical example, the proposed method provides robust solutions that guarantee high and stable network utilities.

An Enhanced Genetic Algorithm for Optimization of Multimodal Function (다봉성 함수의 최적화를 위한 향상된 유전알고리듬의 제안)

  • 김영찬;양보석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.241-244
    • /
    • 2000
  • The optimization method based on an enhanced genetic algorithms is proposed for multimodal function optimization in this paper This method is consisted of two main steps. The first step is global search step using the genetic algorithm(GA) and function assurance criterion(FAC). The belonging of an population to initial solution group is decided according to the FAC. The second step is to decide resemblance between individuals and research optimum solutions by single point method in reconstructive research space. Two numerical examples are also presented in this paper to comparing with conventional methods.

  • PDF

A study on the effective numercial method for nondifferentiable optimization problem (비미분가능 최적화문제의 효율적 수치해에 대한 연구)

  • 김준홍
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.45
    • /
    • pp.253-263
    • /
    • 1998
  • This study presents a method of realizing the theoretical results of Demyanov in practice on a computer in order to produce a kind of constructive evidence for his theory and a practical method of getting numerical results for quasi-differentiab1e optimization problems which may arise in industry and science. A practical result for a restricted nondifferentiable optimization problem is experimented with a simle example.

  • PDF

Optimization Design of Log-periodic Dipole Antenna Arrays Via Multiobjective Genetic Algorithms

  • Wang, H.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1353-1355
    • /
    • 2003
  • Genetic algorithms (GA) is a well known technique that is capable of handling multiobjective functions and discrete constraints in the process of numerical optimization. Together with the Pareto ranking scheme, more than one possible solution can be obtained despite the imposed constraints and multi-criteria design functions. In view of this unique capability, the design of the log-periodic dipole antenna array (LPDA) using this special feature is proposed in this paper. This method also provides gain, front-back level and S parameter design tradeoff for the LPDA design in broadband application at no extra computational cost.

  • PDF

SOLUTIONS OF NONCONVEX QUADRATIC OPTIMIZATION PROBLEMS VIA DIAGONALIZATION

  • YU, MOONSOOK;KIM, SUNYOUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.137-147
    • /
    • 2001
  • Nonconvex Quadratic Optimization Problems (QOP) are solved approximately by SDP (semidefinite programming) relaxation and SOCP (second order cone programmming) relaxation. Nonconvex QOPs with special structures can be solved exactly by SDP and SOCP. We propose a method to formulate general nonconvex QOPs into the special form of the QOP, which can provide a way to find more accurate solutions. Numerical results are shown to illustrate advantages of the proposed method.

  • PDF

A Design Optimization Study of Diffuser Shape in a Supersonic Inlet

  • Lim, S.;Koh, D.H.;Kim, S.D.;Song, D.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.756-760
    • /
    • 2008
  • Optimum shape of Double-cone supersonic inlet is studied by using numerical methods. Double-cone intake shape is used for the design optimization study. And the total pressure recovery at the exit is used to assess the aerodynamic performance of the inlet.

  • PDF