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ABSTRACT

Congestion control is one of major mechanisms to avoid dropped packets. Many researchers use optimization

theories to find an efficient way to reduce congestion in networks, but they do not consider robustness that

may lead to unstable network utilities. This paper proposes a new methodology in order to solve a congestion

control problem for wired networks by using a robust design principle. In our particular numerical example, the

proposed method provides robust solutions that guarantee high and stable network utilities.
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1. Introduction

Congestion control concerns controlling traffic entry
into a network, so as to avoid congestive collapse
by attempting to avoid oversubscription of any of
the processing or link capabilities of the interme-
diate nodes and networks and taking resource re-
ducing steps, such as reducing the rate of sending
packets. In wired network, congestion control is
modeled as a network utility maximization issue
in Kelly’s work [1]:

mazimize Y, U, (z,)

(1

subjectto Hx < ¢

where z, R, and ¢ denote a source rate vector
which is the only optimization variables, routing
matrix, and link capacity vector, respectively. Utility
functions U, (z,) are often assumed to be smooth,
increasing, concave, and to depend on local rates
only, although recent investigations have removed
some of these assumptions for applications that
they are invalid. Low et al. [3] use Langrangian
relaxation to decompose this problem into simpler

problems. This decomposition method allows solving
the problem in a distributed way. The result of
Kelly [1] and Low [3] has been widely accepted
and used in wired networks. However, the assump-
tion that link capacity vector is constant is not
true in wireless networks. Different from wired
networks, there are interferences between links in
wireless networks. Therefore, when a link is used
to transfer data, some others, which are in its
reference region, should not be used. Motivated
by Kelly’s works, a number of researchers apply
this optimization theory in network issues [11]{12]
[131[14}[15][16][17][18] which are surveyed in [2],
[91,[10]. These works solve many issues such as
power control [11], congestion control [11},[18], routing
[12],[16], scheduling [12],[17],[18]. Many decom-
position methods are proposed to solve problems
in distributed ways. The key idea of network opti-
mization is to use limited network resources effi-
ciently to provide the best benefit; therefore, these
above works improve network utilities significantly.
However, to the customers’ point of view, they
expect not only high network utilities but also
stable services with small variances, which can be
solved by robust design.

¥ E dTe TR FAHHATAR] (FO1-2008-000-10196-0) AL 22 Fai=|ol &
* QlAEk B ngalsty, o QlAlolgm AlxwlZedFata} )

*xx olAiehala AR EAIFAT (ichwang@inje.ac.kr) (°: TAIAAD
=EHE KICS2008-08-358, A4z} :2008% 84 184,

HAZ=1A A=) 2008 109 29

961



ol

FEE 4188 =54 °08-11 Vol. 33 No. 11

l..
p

The primary goal of robust design is to determine
the best design factor settings by minimizing per-
formance variability and product bias, ie., the devia-
tion from the target value of a product.(Shin and
Cho, 2005). Because of their practicability in reducing
the inherent uncertainty associated with design factors
and system performance, the widespread application
of robust design techniques has resulted in signi-
ficant improvements in product quality, manufac-
turability and reliability at low cost. To illustrate
this method graphically, the probability density func-
tions of two cases A and B as shown in Figure
1 are considered. Denoting as the desired target
value T for two cases, Figure 1 clearly shows that
the advantage of the mean-squared error (MSE) model;
as a result, the variability reduction is achieved
by allowing a small magnitude of process bias.
From robust design view point, solution B is better
than solution A because of its smaller variance.

In this paper, we use robust design to improve
network optimization problems. Although we believe
that we can apply robust design in any network
optimization problem, for the first step, we focus
on Kelly’s problem. The main contributions of the
paper are as follows:

— We extend Kelly’s problem with consideration
of robustness. In this model, we assume that
data rate follows Poisson distribution which is
more practical than deterministic assumption in
Kelly’s model. By presenting MSE, this model
objective is both high network utility and small
variance. This model is located in section 3.

— The above problem is formulated as a multiple
objective optimization problem. Using the multiple-
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Fig. 1. Robust design
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objective optimization problem makes our solu-

tion more flexible. We can see in section 4

that priority of each user can be adjusted by

the weight vector.

— The numerical analysis in section 4 shows that
our solution is high network utility, robust,
and flexible.

The rest of the paper is organized as follows.
Section II presents related work about network
optimization and robust design. Our mathematical
model is presented in section III. We conduct a
numerical example in section IV. Section V
concludes the paper and discuss about future works.

II. Related works

Currently, motivated by Kelly’s works many
researchers are trying to improve Kelly’s model to
apply in different kinds of networks. The hottest
trend of this problem is to cooperate between layers
in networks to achieve global optimal network
utility. Network protocols may instead be holistically
analyzed and systematically designed as distributed
solutions to some global optimization problems in
the form of generalized network utility maximiza-
tion (NUM) [11]-{18]. Some authors propose methods
that allow MAC and transport layer to cooperate
[11], [13], [14], [15], and {17] while other authors
solve joint MAC, routing, and transport protocol.
These works solve many issues such as power cont-
rol [11], congestion control [11],[18], routing [12],[16],
scheduling [12],[17],[18]. Network environment is
also diverse such ad hoc networks [12], [15], multi-
hop wireless networks [11], [13], [18]... Although
there exists many researches in this area but the
main objective is how to achieve maximal network
utility function. In practice, high network utility, how-
ever, is not enough, customers expect its stability.
This nice characteristic can be obtained by using
robust design.

Pioneered by Dr. Genichi Taguchi, robust design
has quickly become popular in industrial because
it improves product quality significantly. There are
number of strategies for robust design. However,
our objective is to maximize network utility and
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at the same time minimize network utility variance.
Therefore, the strategy that minimizes the bias and
the variance jointly in [5][6] is suitable for this
trade-off. This method is

((ﬂ — 462 (z)

z € [z,,z,]

Minimize
Subject to

@

where (;; — )" denotes bias and ¢ () denotes

variance.
. Problem Formulation

It is well-known that Kelly’s network optimi-
zation is formulated as (1) in [1}{3]. In the first
step of robust design approach, we extend this
basic model. Assume that a network composes a
set of sources 9 and set of links L. Each source
$ € 8§ has data rate 1z, (packets/s). Different

from Kelly’s model [1]{3], we assume that this
data rate follows Poisson distribution with average
parameter A, and U, (z,) denotes network utility

function corresponding to xz,. The network utility
function U, (z,) is assumed to be increasing over
z,. L(s)C L is set of links that source s uses
to transmit data. For each link [ € Z, let S()C S
be set of sources that use link [. Each link [ has
capacity of ¢;. Aggregate data rate through a link

! cannot exceed its capacity. In Kelly’s model, it is
z,<c¢,VleL 3
S g(l) !

But in our model, data rate x, ~ Poisson(\,)
therefore, E(x,)= A, . And thus,

Z;,\ﬁ.sc,,vzeL “)
s & S0

For Kelly’s problem, they tried to find data

rate « that maximizes total network utility func-
tions ZUs(x_«). In this paper, we extend Kelly's

model in two aspects:

— We do not use a simple sum for objective
function. We use multiple objective functions
instead of a single objective function. This
method makes the model more flexible.

— Our objective is to maximize network utility
functions to improve network performance and
at the same time to minimize variance to gua-
rantee robustness.

At first, we estimate expected value of U, (z,).

We have z,~ Poisson(),), ie., probability

function is

e— /\,Ak
P(l‘s=k)27i Vs e §k=0
That leads to
w g7 )\.)\k
E(U(z))= 3]~ U (k) &)

And variance can be computed by

VAR(U,(z,))= E(UX(z,))- (E(U,(2,))’=

© e*/\./\k o L= Ak

=N (k)~(;_j0——e kf‘ U, (k))

©®

In this paper, we are dealing with multiple
objective functions, and we have to define system
targets. Let X denote feasible region of data rate
z which satisfies constraint (3). In Kelly's model,
the objective is to maximize aggregate network
utility functions. Therefore, we can choose ideal
maximum utility functions as our targets for net-

work utility functions. Let U7 = (UST)S . ¢ be the

network utility function target vector where (Fig. 2.)

Ug‘= max xEXUS(x s)

Because U, (z,) is increasing over z, therefore

Us’Tz ma‘XIEXUS(ms)I Uq(maX:rEXxs) @)

To guarantee network performance and robust-
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Fig. 2. Ideal network utility target

ness, we minimize the bias and the variance in a

joint manner. It can be obtained by minimizing

mean squared error (MSE) [4][5][6], i.e.,
minimize

(MSE,) _ ,

)
subject to Z; AN<c Vel
s € J(1)

where

MSE, = (B(U, (z,))— UN)+ VAR(U,(z,)) )

This problem is a multiple objective optimi-
zation problem. There are a number of methods
which are presented in [8] but in this paper we
use weighted-sums approach because of its simpli-
fication. In the numerical example, this method is
acceptable because Pareto surface is convex. For
decision making, we have to minimize weighted
sums as follows:

minimize MSE = ZwsMSEs

sES (10)

A <c,VieL
€ S()

subject to

where w,,s € S is positive such that Z w, =1.
SES

MSE,, which is defined in (9), is a very
complicate function. We do not have its closed
form in general case. Furthermore, this function is
convex neither. Therefore, to solve the problem
(10), we divide feasible region of vector A into a
mesh. We will search the mesh to find the
optimal solution.
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IV. Numerical Analysis and Discussion

Assume that we have a network as shown in
Fig. 3. The network composes of six nodes and
five links. Two flows z, and z, share common
links. Capacities of links (c;,cy,cq,¢4,c5) are
(5,9,5,9,9) which are shown in Fig. 3. We assume
that traffic is elastic, ie., U, (z,)=log(z,), Vs € §.
We conduct this example in MatLab.

Feasible region in decision space is defined by
constraint (3), and shown in Fig. 4(a) in this
example. By applying equations (5), (6), (7), and
(9), we can computer MSE, and MSE,, and
thus feasible regions in criterion space is shown
in Fig. 4(b). We can see that feasible region in
criterion space is convex; therefore, weighted-sums
approach is suitable in this case.

First, we assign weights equally, ie.,
w, =wy, = 0.5. Fig. 5 shows the relationship
between MSE and control variable A. By sear-
ching in feasible region to minimize MSE we
can find that the optimal operation point is
(A1, A9)= (3.6,5.4) as shown in the third row
of Table 1.

At the same time, we implement Low’s solu-
tion [3] for Kelly’s problem. Data rate vector
(z,,z,) converges to (4.5,4.5). As presented in
the previous section, Kelly uses deterministic approach
while we use stochastic approach. Therefore, to
compare solutions of our problem and Kelly’s
problem, we have to convert them into same cri-
teria. Note that if we have data rate of (4.5,4.5)
in Kelly’s model, then average data rate is
(4.5,4.5) too. Thus the solution of Kelly’s

problem is equivalent to operation point of

9 | _

Router

Fig. 3. Network architecture
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Fig. 4. (a) Feasible region in decision space. (b) Feasible
region in criterion space

(A, Ay)=(4.5,4.5) in our model. And we can
compute other criteria in the second row of Table
1. Looking at the last column of Table. 1, we
can see that the solution of our model have
MSE of 05943, less than 10% in comparison
with the one of Kelly’s model.

If we change weights that are assigned to users,
we can obtain different solutions as shown in
Table 2. A weight for a user shows how impor-
tant the user is. A higher weight is assigned for more

Table 1. Comparison between our model and Kelly’s model

Lamda2 0 o

Lamdat

Fig. 5. Mean square error

important user. Indeed, when w, = 0.95, ie., the
second user is very important, all network resources
are used by the second user (A, =0,\, =09).
When w, increases, the first user has more net-
work resource. And when w, = 0.95, the first user

have the first priority to use network resource and
the second user use remaining resource. This
result shows the flexibility of our solution when
we can use weight vector w to control priority of
each user.

Changing weight vector w gives us different couple
(MSE,, MSE,). The curve that connects these cou-

ples is Pareto surface which is shown in Fig. 6.

08t

MSE2

08

04

02}

0 : s 2 1 L y
a as 1 15 2 28 3

MSE?

Fig. 6. Pareto surface

Model ; A E(D) | E(G,) | Var(Uy) | Var(ly) | MSE, | MSE, | MSE
Kelly 45 45 13787 | 13787 | 02945 | 02945 | 03477 | 09644 | 06560
Our Model 36 5.4 11395 | 15789 | 033 | 02504 | 05058 | 06327 | 05943
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Table 2. Solution list with different weights

A Ay E(U) | B(Ly) |Var(Uy)|Var(Uh)| MSE, | MSE, w; Wy MSE
0 9 0 2.1351 0 0.1372 2.5903 0.141 0.05 0.95 0.2635
12 7.8 0.2945 1.9812 0.1933 0.1639 1.9225 0.2105 0.1 0.9 0.3817
1.8 7.2 0.5233 1.8944 0.2902 0.1808 1.4699 0.2726 0.15 0.85 0.4522
2.2 6.8 0.6745 1.8321 0.3279 0.1938 1.202 0.3271 0.2 0.8 0.5021
2.5 6.5 0.7836 1.7827 0.3431 0.2044 1.0252 0.3762 0.25 0.75 0.5385
2.8 6.2 0.8878 1.7309 0.3492 0.2159 0.8699 0.4333 0.3 0.7 0.5643
3 6 0.9543 1.6949 0.3491 0.224 0.7782 0.4763 0.35 0.65 0.582
32 58 1.0185 1.6576 0.3463 0.2324 0.6956 0.5236 04 0.6 0.5924
3.4 5.6 1.0802 1.619 0.3415 0.2413 0.6216 0.5757 0.45 0.55 0.5963
3.6 5.4 1.1395 1.5789 0.335 0.2504 0.5558 0.6327 0.5 0.5 0.5943
38 5.2 1.1965 1.5374 0.3272 0.2599 0.4977 0.6953 0.55 0.45 0.5866
4 5 1.2512 1.4942 0.3185 0.2696 0.4468 0.7638 0.6 04 0.5736
42 4.8 1.3038 1.4494 0.3001 0.2795 0.4026 0.8388 0.65 0.35 0.5552
44 4.6 1.3543 1.4028 0.2994 0.2895 0.3645 0.9207 0.7 0.3 0.5314
4.6 4.4 1.4028 1.3543 0.2895 0.2994 0.3322 1.01 0.75 0.25 0.5016
4.8 42 1.4494 1.3038 0.2795 0.3091 0.3051 1.1074 0.8 0.2 0.4656
5 4 1.4942 1.2512 0.2696 0.3185 0.2829 1.2134 0.85 0.15 0.4225
5 4 1.4942 1.2512 0.2696 0.3185 0.2829 1.2134 0.9 0.1 0.3759
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