• Title/Summary/Keyword: numerical index

Search Result 1,163, Processing Time 0.031 seconds

Flexural behavior of RC beams made with basalt and polypropylene fibers: Experimental and numerical study

  • Murad, Yasmin Z.;Abdel-Jabar, Haneen
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.165-173
    • /
    • 2022
  • The effect of basalt and polypropylene fibers on the flexural behavior of reinforced concrete (RC) beams is investigated in this paper. The compressive and tensile behaviors of the basalt concrete and polypropylene concrete cylinders are also investigated. Eight beams and 28 cylinders were made with different percentages of basalt and polypropylene fibers. The dosages of fiber were selected as 0.6%, 1.3%, and 2.5% of the total cement weight. Each type of fiber was mixed solely with the concrete mix. Basalt and polypropylene fibers are modern and cheap materials that can be used to improve the structural behavior of RC members. This research is designed to find the optimum percentage of basalt and polypropylene fibers for enhancing the flexural behavior of RC beams. Test results showed that the addition of basalt and polypropylene fibers in any dosage (0.6%, 1.3%, and 2.5%) can increase the flexural strength and displacement ductility index of the beams where the maximum enhancement was measured with 1.3% fibers. The maximum increments in the flexural strength and the displacement ductility index were 30.39% and 260% for the basalt fiber case, while the maximum improvement for the polypropylene fibers case was 55.5% and 230% compared to the control specimen. Finite element (FE) models were then developed in ABAQUS to predict the numerical behaviour of the tested beams. The FE models were able to predict the experimental behaviour with reasonable accuracy. This research confirms the efficiency of basalt and polypropylene fibers in enhancing the flexural behavior of RC beams, and it also suggests the optimum dosage of fibers.

Seismic Performance Assessment of Circular Reinforced Concrete Bridge Piers with Confinement Steel: II. Performance Assessment (원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가 : II. 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kang, Hyeong-Taek;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.351-361
    • /
    • 2006
  • In this study, nonlinear finite element analysis procedures are presented for the seismic performance assessment of circular reinforced concrete bridge piers with confinement steel. This paper defines a damage index based on the predicted hysteretic behavior of a circular reinforced concrete bridge pier. Damage indices aim to provide a means of quantifying numerically the damage in circular reinforced concrete bridge piers sustained under earthquake loading. The proposed numerical method is applied to circular reinforced concrete bridge piers with confinement steel tested by the authors. The proposed numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several test specimens investigated.

Numerical approach to predict stress-strain model for tie confined self curing self compacting concrete (TCSCSCC)

  • P Swamy Naga Ratna Giri;Vikram Tati;Rathish Kumar P;Rajesh Kumar G
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.205-216
    • /
    • 2024
  • Self-Curing Self Compacting Concrete (SCSCC), is a special concrete in contemporary construction practice aimed at enhancing the performance of structural concrete. Its primary function is to ensure a sufficient moisture supply that facilitates hydration along with flow, particularly in the context of high-rise buildings and tall structures. This innovative concrete addresses the challenges of maintaining adequate curing conditions in large-scale projects, maintaining requisite workability, contributing to the overall durability and longevity of concrete structures. For implementing such a versatile material in construction, it is imperative to understand the stress-strain (S-S) behaviour. The primary aim of this study is to develop the S-S curves for TCSCSCC and compare through experimental results. Finite element (FE) analysis based ATENA-GiD was employed for the numerical simulation and develop the analytical stress-strain curves by introducing parameters viz., grade of concrete, tie diameter, tie spacing and yield strength. The stress ratio and the strain ratios are evaluated and compared with experimental values. The mean error is 1.2% with respect to stresses and 2.2% in case of strain. Finally, the stress block parameters for tie confined SCSCC are evaluated and equations are proposed for the same in terms of confinement index.

Study of Rip Current Warning Index Function Varied according to Real-time Observations (실시간 관측정보에 따른 이안류 경보 지수함수 연구)

  • Choi, Junwoo;Lim, Chae Ho;Yoon, Sung Bum
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.477-490
    • /
    • 2013
  • A rip-current warning index function, which is estimated from the likelihood of rip current quantified based on numerical simulations under various sea environments and is varied according to real-time buoy-observations, was studied to help protect against rip current accidents at Haeundae beach. For the quantification, the definition of likelihood of rip current, which proposed by Choi et al. (2011, 2012b), was employed and estimated based on Boussinesq modelling. The distribution of likelihood of rip current was evaluated by using various simulations according to scenarios established based on physical quantities(i.e., wave parameters) of buoy-observations. To index the likelihood of rip current, empirical functions were derived based on the distribution and adjusted to observational environments. In this study, the observations from June to September in 2011 at Haeundae beach were applied to the rip-current index functions, and its applications into the real events found based on CCTV images were presented and investigated. In addition, limitations and improvements of the rip-current index function were discussed.

Distribution of the Wetness Index and Field Characteristics of Talus Slopes in the Jungsun Area, Gangwon Province (강원도 정선 지역 테일러스 사면의 습윤지수 및 현장 특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Rhee, Jong-Hyun;Kim, Sung-Wook;Choi, Eun-Kyeong
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.391-399
    • /
    • 2010
  • We performed a hydraulic analysis based on the wetness index of talus slopes in Jungsun, Gangwon province. We estimated the relation between the degree of development of the temporary water system, and talus topography and distribution. We also assessed the distribution of talus based on a map of the wetness index. We divided areas of tallus into stable and unstable types, and estimated the size, distribution and shape-preferred orientation of clasts. We performed numerical simulations of rockfall events to assess the optimum location of rockfall barriers upon talus slopes.

Reliability-based assessment of steel bridge deck using a mesh-insensitive structural stress method

  • Ye, X.W.;Yi, Ting-Hua;Wen, C.;Su, Y.H.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.367-382
    • /
    • 2015
  • This paper aims to conduct the reliability-based assessment of the welded joint in the orthotropic steel bridge deck by use of a mesh-insensitive structural stress (MISS) method, which is an effective numerical procedure to determine the reliable stress distribution adjacent to the weld toe. Both the solid element model and the shell element model are first established to investigate the sensitivity of the element size and the element type in calculating the structural stress under different loading scenarios. In order to achieve realistic condition assessment of the welded joint, the probabilistic approach based on the structural reliability theory is adopted to derive the reliability index and the failure probability by taking into account the uncertainties inherent in the material properties and load conditions. The limit state function is formulated in terms of the structural resistance of the material and the load effect which is described by the structural stress obtained by the MISS method. The reliability index is computed by use of the first-order reliability method (FORM), and compared with a target reliability index to facilitate the safety assessment. The results achieved from this study reveal that the calculation of the structural stress using the MISS method is insensitive to the element size and the element type, and the obtained structural stress results serve as a reliable basis for structural reliability analysis.

Reliability-Based Topology Optimization for Structures with Stiffness Constraints (강성구속 조건을 갖는 구조물의 신뢰성기반 위상최적설계)

  • Kim, Sang-Rak;Park, Jae-Yong;Lee, Won-Goo;Yu, Jin-Shik;Han, Seog-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.77-82
    • /
    • 2008
  • This paper presents a Reliability-Based Topology Optimization(RBTO) using the Evolutionary Structural Optimization(ESO). An actual design involves some uncertain conditions such as material property, operational load and dimensional variation. The Deterministic Topology Optimization(DTO) is obtained without considering the uncertainties related to the uncertainty parameters. However, the RBTO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraints are satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability index approach(RIA) is adopted to evaluate the probabilistic constraints. In order to apply the ESO method to the RBTO, sensitivity number is defined as the change in the reliability index due to the removal of the ith element. Numerical examples are presented to compare the DTO with the RBTO.

Damage Identification in Truss Bridges using Damage Index Method (손상지수법을 이용한 트러스 교량의 손상추정)

  • Lee, Bong Hak;Kim, Jeong Tae;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.279-290
    • /
    • 1998
  • An existing Damage Index Method is verified to demonstrate its feasibility for detecting structural damage in truss bridges (1) for which modal parameters are available for a few modes of vibration and (2) for which baseline modal information is not available from its as-built state. The theory of approach to detect locations of damage and to identify baseline modal model is summarized on the basis of system identification theory and modal sensitivity theory. The feasibility of the Damage Index Method is demonstrated using a numerical example of a truss bridge with 11 subsystems of 211 members and for which only two modes of vibration were recorded for post-damaged state.

  • PDF

Rail Transport Operation Control for Railway Embankment under rainfall (강우시 성토사면의 열차운전규제기준)

  • Kim, Hyun-Ki;Shin, Min-Ho;Choi, Chan-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.225-232
    • /
    • 2009
  • Infiltration of rainfall causes railway slopes to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze its stability by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. And suggested rainfall index is compared with the rail transport operation control which is used in KORAIL. It is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF

Sensing Characteristics of Uncoated Double Cladding Long-period Fiber Grating Based on Mode Transition and Dual-peak Resonance

  • Zhou, Yuan;Gu, Zheng Tian;Ling, Qiang
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.243-249
    • /
    • 2021
  • In this paper, the sensing characteristics of a double cladding fiber (DCF) long-period fiber grating (LPFG) to the surrounding refractive index (SRI) are studied. The outer cladding of the DCF plays the role of the overlay, thus, the mode transition (MT) phenomenon of DCF can be induced by etching the outer cladding radius instead of coating overlays. The response characteristics of the effective refractive index (ERI) of the cladding mode to the outer cladding radius are analyzed. It is found that in the MT range, the change rate of ERIs of cladding modes is relatively larger than that for other ranges. Further, based on the features of the mode transition region (MTR), the phase-matching curve of the 11th cladding mode is investigated, and the response of the DCF-LPFG to the SRI is characterized by the change of wavelength intervals between the dual peaks under different outer cladding radii. The numerical simulation results show that the SRI sensitivity is greatly improved, which is available to 3484.0 nm/RIU with the fitting degree 0.998 in the SRI range of 1.33-1.37. The proposed DCF-LPFG can provide new theoretical support for designing the DCF-LPFG refractive index sensor with excellent performances of sensitivity, linearity and structure.