• Title/Summary/Keyword: numerical formulation

Search Result 1,594, Processing Time 0.027 seconds

A Study on the Geometrically Nonlinear Analysis of Spatial Structures by Using Arc Length Method (호장법을 이용한 공간구조의 기하학적 비선형 해석에 관한 연구)

  • Han, Sang-Eul;Lee, Sang-Ju;Lee, Kyoung-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.381-386
    • /
    • 2007
  • The present study is concerned with the application of Constant arc-length method that proposed by Crisfield in the investigation of the geometrically nonlinear behaviour of spatial structures composed by truss or beam element. The arc-length method can trace the full nonlinear equilibrium path of Spatial structure far beyond the critical point such as limit or bifurcation point. So, we have developed the constant arc-length method of Crisfield to analysis spatial structure. The finite element formulation is used to develop the 3d truss/beam element including the geometrical nonlinear effect. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of Constant arc length method in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

Infinite element for the scaled boundary analysis of initial valued non-homogeneous elastic half space (초기치를 갖는 비동질무한영역의 해석을 위한 비례경계무한요소법)

  • Lee, Gye-Hee;Deeks, Andrew J.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.259-264
    • /
    • 2007
  • In this paper, to analyze the initial valued non-homogeneous elastic half space by the scaled boundary analysis, the infinite element approach was introduced. The free surface of the initial valued non-homogeneous elastic half space was mode1ed as a circumferential direction of boundary scaled boundary coordinate. The infinite element was used to represent the infinite length of the free surface. The initial value of material property(elastic modulus) was considered by the combination of the position of the sealing center and the power function of the radial direction. By use of the mapping type infinite element, the consistent e1ements formulation could be available. The performance and the feasibility of proposed approach are examined by two numerical examples.

  • PDF

A Finite Element Solution to the Group Diffusion Problems with Albedo-Type Boundary Conditions (Albedo형 경계조건을 가진 다군확산문제에 대한 유한요소해)

  • Kun Joong Yoo;Chang Hyo Kim;Chang Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.178-185
    • /
    • 1982
  • Albedo-type boundary condition is incorporated into the finite element formulation of the cubic Hermite polynomials for the two-dimensional solution of the two-group diffusion problem. Two modifications are introduced with respect to the conventional expression for the weak form of the group diffusion equation with the zero flux or zero current boundary condition and the cubic element functions over the boundary nodes. The finite element formulations obtained from those modifications are tested with the two-dimensional ZION problem. The numerical effectiveness of the modifications are examined.

  • PDF

Earing Predictions in the Deep-Drawing Process of Planar Anisotropic Sheet-Metal (평면 이방성 박판 딥드로잉 공정의 귀발생 예측)

  • 이승열;금영탁;정관수;박진무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.118-128
    • /
    • 1994
  • The planar anisotropic FEM analysis for predicting the earing profiles and draw-in amounts in the deep-drawing processes is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vectors and the normal contact pressure. the consistent full set of governing relations, comprising equilibrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameter. The linear triangular membrane elements are used for depicting the formed sheet. with the numerical simulations of deep drawing processes of flat-top cylindrical cup for the 2090-T3 aluminum effects on the earing behavior are examined. Earing predictions made for the 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

Analysis of Deformation Localization of Void Material using Nolocal Constitutive Relation (I) (비국소형 구성식을 이용한 보이드 재료의 변형 국소화 거동의 해석(I))

  • 김영석;최홍석;임성언
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.59-65
    • /
    • 2000
  • Most studies of failure analysis in ductile metals have been based on the classical plasticity theory using the local constitutive relations. These frequently yields a physically unrealistic solution, in which a numerical prediction of the onset of a deformation localization shows an inherent mesh-size sensitivity. A one way to remedy the spurious mesh sensitivity resulted in the unreasonable results is to incorporate the non-local plasticity into the simulation model, which introduce an internal (material) length-scale parameter into the classical constitutive relations. In this paper, a non-local version of the modified Gurson constitutive relation has been introduced into the finite element formulation of the simulation for plane strain compression of the visco elastic-plastic void material. By introducing the non-local constitutive relations we could successfully removed the inherent mesh-size sensitivity for the prediction of the deformation localization. The effects of non-local constitutive relation are discussed in terms of the load-stroke curve and the strain distributions accross the shear band.

  • PDF

Prediction of the Forming Limit Diagram for AZ31B Sheet at Elevated Temperatures Considering the Strain-rate Effect (변형률속도 효과를 고려한 AZ31B 판재의 온간 성형한계도 예측)

  • Choi, S.C.;Kim, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.172-175
    • /
    • 2009
  • The purpose of this study is to predict the forming limit diagram (FLD) of strain-rate sensitive materials on the basis of the Marciniak and Kuczynski (M-K) theory. The strain-rate effect is taken into consideration in such a way that the stress-strain curves for various strain-rates are inputted into the formulation as point data, not as curve-fitted models such as power function. To solve the nonlinear system of equations derived from the equilibrium and constraints in the groove region and the safe zone, the Newton-Raphson method is used. The theoretical FLDs using four different yield criteria, that are von Mises, Hill (1948), Hill (1979), Logan and Hosford, are compared with the experimental, numerical (FEA) and other theoretical results. A new trial is made where a modified M-K model having n-step grooves is introduced to describe a real localized neck.

  • PDF

An Interior Point Method based Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints

  • Song Hwa-Chang;Lee Byong-Jun;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.152-158
    • /
    • 2005
  • This paper describes a reactive optimal power flow incorporating margin enhancement constraints. Margin sensitivity at a steady-state voltage instability point is calculated using invariant space parametric sensitivity, and it can provide valuable information for selection of effective control parameters. However, the weakest buses in neighboring regions have high margin sensitivities within a certain range. Hence, the control determination using only the sensitivity information might cause violation of operational limits of the base operating point, at which the control is applied to enhance voltage stability margin in the direction of parameter increase. This paper applies an interior point method (IPM) to solve the optimal power flow formulation with the margin enhancement constraints, and shunt capacitances are mainly considered as control variables. In addition, nonlinearity of margin enhancement with respect to control of shunt capacitance is considered for speed-up control determination in the numerical example using the IEEE 118-bus test system.

Frequency Sensitivity Analysis of Nonsinusoidal Input Voltage in Steady State (정상상태에서의 비정현적 입력전압의 주파수 민감도 해석)

  • Choi, Myung-Jun;Lee, Se-Hee;Kim, Chang-Hyun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.124-126
    • /
    • 1997
  • A number of electromagnetic devices periodically driven by solid-state switches have been analyzed with time-stepping finite element method, which requires much time to reach a steady state. The sensitivity analysis which have been used for the shape design is employed for an efficient calculation of linear magnetodynamics with nonsinusoidal driving sources. The high-order frequency sensitivity from the harmonic finite element formulation is used along with Fourier transform and Taylor series expansion. The algorithm is validated through a numerical example of a single-phase transformer driven by a trapezoidal voltage source.

  • PDF

Prediction of Transmission Loss of Elliptic Expansion Chamber with Mean Flow by 3-Dimensional Finite Element Method (3차원 유한요소법을 이용한 타원 단면 소음기의 투과 손실 계산)

  • 윤성기;이응식
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.271-278
    • /
    • 1993
  • Acoustic characteristics of silencer system are affected by various geometric parameters such as cross sectional geometry, size of chamber, and location of inlet-outlet port. It is impossible to obtain exact solutions of the equations of acoustic wave propagation except few simple cases. So, we resort to numerical techniques to analyze performance of acoustic system. In this work, finite element formulation has been obtained to predict transmission loss of an arbitrary 3-dimensional muffler in the presence of mean flow of low mach number. The effect of the degree of the ellipticity of expansion chambers on the transmission loss has been studied using the resulting finite element equation.

  • PDF

Generalized modal analysis of asymmetrical rotor system using modulated coordinates (변조 좌표계를 이용한 비대칭 회전체계의 일반화된 모드해석)

  • 서정환;홍성욱;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.526-531
    • /
    • 2003
  • Conventional modal analysis techniques are known to be inappropriate for asymmetrical rotor systems. when the equations of motion are written in the stationary coordinates, due to the presence of time varying parameters. This paper presents a generalized modal analysis method for asymmetrical rotor systems in the stationary coordinates, employing the modulated coordinates and the lambda matrix formulation. A numerical example with a flexible asymmetric rotor model is provided to demonstrate the effectiveness of the proposed modal analysis method. As an application of the proposed method, modal analysis is also performed with an open cracked rotor system.

  • PDF