• Title/Summary/Keyword: numerical formulation

Search Result 1,594, Processing Time 0.023 seconds

Effects of Material Characteristics on the Dynamic Response of the Reinforced Concrete Slabs (재료 특성이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.43-49
    • /
    • 2007
  • The reinforced concrete slab is one of main structure members in the construction industry sector. However, most of researches regarding to RC slabs have been focused on two-dimensional Mindlin-type plate element on the basis of laminated plate theory since three-dimensional solid element has a lot of difficulties in finite element formulation and costs in CPU time. In reality, the RC slabs are subjected to dynamic loads like a heavy traffic vehicle load, and thus should insure the safety from the static load as well as dynamic load. Once we can estimate the dynamic behaviour of RC slabs exactly, it will be very helpful for design of it. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The applicability of the proposed finite element has been tested for dynamic behaviour of RC slabs with respect to characteristics of concrete materials in terms of cracking stress, crushing strain, fracture energy and Poisson's ratio. The effect on dynamic behaviour is dependent on not crushing strain but cracking stress, fracture energy and Poisson's ratio. In addition to this, it is shown the damping phenomenon of RC slabs has been identified from the numerical results by using Rayleigh damping.

Three-dimensional cure simulation of composite structures by the finite element method (유한요소법을 이용한 복합재 구조물의 3차원 경화 수치모사)

  • Min, Kuoung-Jae;Park, Hoon-Cheol;Yoon, Kwang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.39-45
    • /
    • 2002
  • In this paper, a finite element formulation was introduced for the three-dimensional cure simulation of composite structures. Based on the formulation, a three-dimensional finite element code was developed. Numerical examples found in the literatures were solved for code verification. Results from the present analyses agreed well with the measured cure-induced temperatures. Unlike in one or two dimensional analysis, temperature and degree of cure were able to be calculated at any point within composite structures in the present analysis. The finite element program can be used for the cure simulation of composite structures with arbitrary geometry under non-uniform autoclave temperature distribution.

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

Optimization of Sweet Rice Muffin Processing Prepared with Oak Mushroom (Lentinus edodes) Powder (표고버섯 첨가 찹쌀머핀의 최적화 및 품질특성)

  • Kim, Bo-Ram;Joo, Na-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.2
    • /
    • pp.202-210
    • /
    • 2012
  • The purpose of this study was to bake sweet rice muffins with oak mushroom ($Lentinus$ $edodes$) powder. The process included substituting sweet rice flour for cake flour and adding oak mushroom powder. This study determined the optimal mixing conditions of oak mushroom muffins by adjusting the amounts of oak mushroom powder, whole eggs, and soybean oil. The mixing conditions for the oak mushroom muffins included 3 categories: oak mushroom powder (X1), whole eggs (X2), and soybean oil (X3) by Central Composite Design (CCD) which was optimized by Response Surface Methodology (RSM). Oak mushroom muffin formulation was optimized using rheology. Yellowness (p<0.001) and redness (p<0.05) displayed a linear model pattern, whereas lightness (p<0.05) was represented by a quadratic model. Among the sensory properties, variables that appeared to show significant values such as appearance (p<0.5), texture (p<0.5), and overall quality (p<0.5) were used to identify optimums. The result of mechanical properties showed significant values in gumminess (p<0.5) and chewiness (p<0.5). The numerical and graphical methods used in this study determined that the optimum formulation for oak mushroom powder sweet rice muffins was 8.75 g of oak mushroom powder, 235.95 g of whole eggs, and 19.93 g of soybean oil.

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.483-510
    • /
    • 2006
  • The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

Inelastic Transient Dynamic Analysis of Two- and Three-dimensional Stress Problems by Particular Integral Boundary Element Method (특수 적분해 경계요소법에 의한 2차원 및 3차원 동적 탄소성 응력 해석)

  • Kim, Jae-Suk;Owatsiriwong, Adisorn;Park, Kyung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.375-382
    • /
    • 2008
  • The particular integral formulation for two(2D) and three(3D) dimensional inelastic transient dynamic stress analysis is presented. The elastostatic equation is used for the complementary solution. Using the concept of global shape function, the particular integrals for displacement and traction rates are obtained to approximate acceleration of the inhomogeneous equation. The Houbolt time integration scheme is used for the time-marching process. The Newton-Raphson algorithm for plastic multiplier is used to solve the system equation. Numerical results of four example problems are given to demonstrate the validity and accuracy of the present formulation.

Simulation of Dynamic Crack Propagation in Uni-Directional and Cross-Ply Fiber-Reinforced Composites (단일방향 및 크로스-플라이 섬유강화 복합체에서의 동적균열 전파모사)

  • Hwang, Chan-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.383-390
    • /
    • 2008
  • This paper presents the formulation and numerical implementation of a spectral scheme specially developed to simulate dynamic fracture events in unidirectional and cross-ply fiber-reinforced composites. The formulation is based on the spectral representation of the transversely isotropic elastodynamic relations between the traction stresses along the fracture plane and the resulting displacements. Example problem of dynamically propagating cracks in fiber-reinforced composites is investigated and compared with reference solutions available in the literature and/or experimental observations. This scheme can be directly applicable to the interfacial fracture analysis in the FRP reinforced concrete structures.

Nonlinear Analysis of Dynamic Response of Jacket Type Offshore Structures (Jacket형 해양구조물(海洋構造物)의 비선형(非線形) 동적응답해석(動的應答解析))

  • Y.C.,Kim;I.S.,Nho;S.W.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.33-45
    • /
    • 1986
  • In the present paper, the nonlinear analysis of dynamic response of the jacket type offshore structures subject to nonlinear fluid force is performed. Furthermore, several analysis methods, such as quasi-static analysis, Newmark-$\beta$ method and state vector time integration technique, and described and compared with each others in order to investigate the efficiency numerical of the schemes for this kind of nonlinear structural analysis. In the problem formulation, various environmental forces acting on the jacket type offshore structure have been studied and calculated. Particularly, hydrodynamic forces are calculated by using the Morison type formula, which contains the interaction effect between the motion of the structure and the velocity of fluid particles. Also, Stokes' 5th order wave theory and Airy's linear wave theory are used to predict the velocity distribution of the fluid particles. Finally, the nonlinear equation of motion of the structure is obtained by using three-dimensional finite element formulation. Based on the above procedures, two examples, i.e. a single pile and a typical offshore jacket platform, are studied in details.

  • PDF

A Study on the Influence of the Punch Stroke of Bead on the Draw-bead process by using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 비드 펀치 행정거리가 드로우비드 공정에 미치는 영향에 관한 연구)

  • 정동원
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 2001
  • The bead is used to provide properly restraining force in the sheet metal forming process. This bead process includes bending and geometrical non-linearity, and affects the state of binderwrap. Therefore, the analysis of bead process is very important to obtain the desired formability. In this paper, the research about the influence of the punch stroke of bead on the draw-bead process was conducted. Results from the analysis will give useful information to the effective tool design of blank forming process. To analyze the bead process, and elasto-plastic finite element formulation is constructed from the equilibrium equation and the considered boundary conditions involved a proper contact condition. The static-explicit finite element method as a numerical method for the analysis was applied to the analysis program code. It was found that this method could solve too much computation time and convergence problem owing to high non-linearity of bead forming process.

  • PDF

Numerical Estimation of Heat flux on the Deck Exposed to the High Temperature Impinging Jet of VTOL Vehicle (수직 이착륙기의 고온 고속 배기열에 의한 함정 갑판의 열유속 계산을 위한 수치모델)

  • Jang, Hosang;Hwang, Seyun;Choi, Wonjun;Lee, Jang Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.74-85
    • /
    • 2018
  • This study has analyzed the convective heat transfer on the deck exposed to the high-temperature impingement exhausting from a VTOL vehicle. The heat flow of the impingement on the deck is modeled by the convection heat transfer. The convective heat flux generated by the hot impinging jet is investigated by using both convective heat transfer formulation and conjugate heat transfer formulation. Computational fluid dynamics(CFD) code was used to compute the heat flux distribution. The RANS equation and the k-e turbulence model were used to analyze the thermal flow of the impinging jet. The heat flux distribution near the stagnation zone obtained by the conjugate heat transfer analysis shows more reasonable than the convective heat transfer analysis.