• Title/Summary/Keyword: numerical formulation

Search Result 1,594, Processing Time 0.021 seconds

Nonlocal integral elasticity analysis of beam bending by using finite element method

  • Taghizadeh, M.;Ovesy, H.R.;Ghannadpour, S.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.755-769
    • /
    • 2015
  • In this study, a 2-D finite element formulation in the frame of nonlocal integral elasticity is presented. Subsequently, the bending problem of a nanobeam under different types of loadings and boundary conditions is solved based on classical beam theory and also 3-D elasticity theory using nonlocal finite elements (NL-FEM). The obtained results are compared with the analytical and numerical results of nonlocal differential elasticity. It is concluded that the classical beam theory and the nonlocal differential elasticity can separately lead to significant errors for the problem under consideration as distinct from 3-D elasticity and nonlocal integral elasticity respectively.

Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.597-609
    • /
    • 2010
  • A problem formulation and solution methodology for design optimization of laminated thin-walled composite beams of generic section is presented. Objective functions and constraint equations are given in the form of beam stiffness. For two different problems one for open section and the other for closed section, the objective function considered is bending stiffness about x-axis. Depending upon the case, one can consider bending, torsional and axial stiffnesses. The different search and optimization algorithm, known as Evolution Strategies (ES) has been applied to find the optimal fibre orientation of composite laminates. A multi-level optimization approach is also implemented by narrowing down the size of search space for individual design variables in each successive level of optimization process. The numerical results presented demonstrate the computational advantage of the proposed method "Evolution strategies" which become pronounced to solve optimization of thin-walled composite beams of generic section.

Series solutions for spatially coupled buckling anlaysis of thin-walled Timoshenko curved beam on elastic foundation

  • Kim, Nam-Il
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.447-484
    • /
    • 2009
  • The spatially coupled buckling, in-plane, and lateral bucking analyses of thin-walled Timoshenko curved beam with non-symmetric, double-, and mono-symmetric cross-sections resting on elastic foundation are performed based on series solutions. The stiffness matrices are derived rigorously using the homogeneous form of the simultaneous ordinary differential equations. The present beam formulation includes the mechanical characteristics such as the non-symmetric cross-section, the thickness-curvature effect, the shear effects due to bending and restrained warping, the second-order terms of semitangential rotation, the Wagner effect, and the foundation effects. The equilibrium equations and force-deformation relationships are derived from the energy principle and expressions for displacement parameters are derived based on power series expansions of displacement components. Finally the element stiffness matrix is determined using force-deformation relationships. In order to verify the accuracy and validity of this study, the numerical solutions by the proposed method are presented and compared with the finite element solutions using the classical isoparametric curved beam elements and other researchers' analytical solutions.

A Study on Parts Route Selection and Economic Design in Flexible Manufacturing System (유연 제조시스템에서 작업경로선택과 경제적인 설계에 관한 연구)

  • 장석화
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.249-263
    • /
    • 1997
  • This paper addresses the parts route selection and economic design in flexible manufactuirng system (FMS). Parts are processed through several stage workstations according to operation sequences. The machine of each workstation can do multiple operation functions. And the operation stage of a part can be processed in several workstations, which are non-identical in functional performance. The objective of this paper is to determine the processing routes of parts, number of machine at each workstation, number of vehicle and makespan time. Two models are suggested. One is assumed that the operation stage of parts can be processed at the only one among several available workstations. Other is assumed that the operation stage of parts is allowed to be processed at several workstations. Parts are transported by automated guided vehicles (AGVs). The decision criteria is to minimize the sum of processing cost, travel cost, setup cost and overhead cost. The formulation of models is represented. A solution algorithm is suggested, and a numerical example is shown.

  • PDF

A Mathematical Model and an Algorithm for Dimensioning Problem of B-ISDN Extension (B-ISDN 확장 시 링크용량 설계 모형 및 알고리듬에 관한 연구)

  • 주종혁
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.62
    • /
    • pp.11-20
    • /
    • 2001
  • At the initial deployment of B-ISDN, the heterogeneity of services and the bandwidth requirement make dimensioning of B-ISDN much more complicated than the dimensioning of homogeneous circuit or packet switched networks. Therefore B-ISDN must be extended gradually according to future telecommunication technology or service demands. In this paper, we propose a mathematical formulation for dimensioning problem of B-ISDN extension, considering the characteristics of ATM(Asynchronous Transfer Mode) such as various quality of services, the statistical multiplexing effects of VPCs(Virtual Path Connections) and the modularity of transmission links allocated when new B-ISDN nodes are given. The algorithm based on the simultaneous linear approximation technique and Lagrangian relaxation method and some numerical results are also presented.

  • PDF

Parts Processing Route and Economic Design in Flexible Manufacturing Systems employing AGVs for Transport (무인 반송시스템을 이용하는 유연 제조시스템에서 작업경로와 경제적 설계)

  • 장석화
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.46
    • /
    • pp.19-32
    • /
    • 1998
  • This paper addresses the processing route of parts and economic design in flexible manufacturing systems (FMSs) employing AGVs for Transport. Parts are processed through several workstations according to operation sequences. The machine of each workstation can do multiple operation functions. The operation stage of a part can be processed in several workstations, which are non-identical in functional performance. The objective of this paper is to determine the processing route of parts, number of machines at each workstation, number of vehicles. The model is assumed that the operation stage of parts can be processed at the only one among several available workstations. Parts are transported by automated guided vehicle system(AGVS). The decision criteria is to minimize the sum of processing cost, travel cost, operating cost. A model formulation is represented. A solution algorithm is suggested by using mathematical programming and simulation technique, and a numerical example is shown.

  • PDF

A Heuristic Solution for the Inventory Constrained Ship Routing for Multi-Commodity Bulk (복합화물의 재고를 고려한 선박 운송계획에 관한 발견적 해법)

  • Won, Suk-Hee;Hwang, Seung-June
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.142-152
    • /
    • 2009
  • We developed two heuristic methods to solve the problem considering a fleet of ships delivering chemical products from terminals to terminals. We need to decide how much of each product to carry, on which ship, subject to the conditions that all terminals must have sufficient products to meet demand, and the stock levels of the products cannot exceed the inventory capacity of that terminal. Mathematical formulation and the optimal objective value for the small size problems are compared with two greedy heuristic methods developed in terms of solution qualities and computing time. Numerical experiments on test problems indicate that the heuristics are effective at finding good solutions quickly.

자동차 산업의 CAE 응용 II - Design Analysis 관련 수퍼 컴퓨팅 파워의 활용 -

  • 이성철;김대영
    • Journal of the KSME
    • /
    • v.30 no.3
    • /
    • pp.267-274
    • /
    • 1990
  • 기술분야의 발전이 거듭됨과 병행하여, 산업계의 설계 해석 부서에서 CAE의 중요성은 컴퓨팅 시 스템과 더불어 더욱 강조되고 있다. 슈펴 컴퓨팅 파워의 필요성은, 첫째, applied mechanics의 advanced 해석분야, 둘째, 대형 엔지니어링 문제해석 결과처리 (data acquisition & management), 셋째, real time response와 integrated 엔지니어링 시스템개발 (CAD/CAM 데이터와의 연계성) 등의 측면에서 나타난다고 볼 수 있다. 원가, 안정성 그리고 신뢰성은 모두 만족시키는 효율적인 방안으로서는 대형 수퍼 컴퓨터와 마이크로 컴퓨터의 중간 역할을 할 수 있는 hybrid type의 미니 수퍼 시스템, 즉 departmental highly-parallel 시스템의 등장이 필수적이라고 할 수 있다. 또한, 산업계의 설계 해석 지원과 관련, 구조, 유체, 동력학 등의 분야별 응용 문제와 numerical formulation등의 특성에 적합한 시스템 configuration과 프로세싱이 개발되어야 한다. 이는 실 수요자의 상황에 맞는 "목적성 전용 machine"의 등장이 가능해 질 것으로 판단된다. 향 후, vectorization 그리고 parallelization 된 소프트웨어의 가용성이 극복해야 할 큰 과제로 남아 있 다고 본다.

  • PDF

On Propeller Performance of DTC Post-Panamax Container Ship

  • Kinaci, Omer Kemal;Kukner, Abdi;Bal, Sakir
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.77-89
    • /
    • 2013
  • The propeller performance has been investigated using a benchmark Duisburg Test Case ship with RANSE. First, the hydrodynamic characteristics of propeller in case of open water have been analyzed by a commercial CFD program and the results are compared with those of experimental data. Later, the flow around the bare hull has been solved and the frictional resistance value and form factor of the ship have been obtained and compared with those of ITTC57 formulation and experimental results for validation. The free surface effect has been ignored. A good agreement has been obtained between the results of RANSE and experiments at both stages. Then the ship - propeller interaction problem was solved by RANSE and the differences in thrust, torque and efficiency of propeller as compared with the open-water numerical results have been discussed.

Reduction of Structure-borne Noises in a Two-Dimensional Cavity using Optimal Treatment of Damping Materials (제진재의 최적배치를 통한 이차원 공동의 구조기인소음 저감)

  • Lee, Doo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1581-1587
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of viscoelastic unconstrained damping materials. For the analysis of structural- acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics of the viscoelastic materials with respect to frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.