• Title/Summary/Keyword: numerical errors

Search Result 873, Processing Time 0.028 seconds

Sensitivity Analysis of Satellite BUV Ozone Profile Retrievals on Meteorological Parameter Errors (기상 입력장 오차에 대한 자외선 오존 프로파일 산출 알고리즘 민감도 분석)

  • Shin, Daegeun;Bak, Juseon;Kim, Jae Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.481-494
    • /
    • 2018
  • The accurate radiative transfer model simulation is essential for an accurate ozone profile retrieval using optimal estimation from backscattered ultraviolet (BUV) measurement. The input parameters of the radiative transfer model are the main factors that determine the model accuracy. In particular, meteorological parameters such as temperature and surface pressure have a direct effect on simulating radiation spectrum as a component for calculating ozone absorption cross section and Rayleigh scattering. Hence, a sensitivity of UV ozone profile retrievals to these parameters has been investigated using radiative transfer model. The surface pressure shows an average error within 100 hPa in the daily / monthly climatological data based on the numerical weather prediction model, and the calculated ozone retrieval error is less than 0.2 DU for each layer. On the other hand, the temperature shows an error of 1-7K depending on the observation station and altitude for the same daily / monthly climatological data, and the calculated ozone retrieval error is about 4 DU for each layer. These results can help to understand the obtained vertical ozone information from satellite. In addition, they are expected to be used effectively in selecting the meteorological input data and establishing the system design direction in the process of applying the algorithm to satellite operation.

The optimal parameter estimation of storage function model based on the dynamic effect (동적효과를 고려한 저류함수모형의 최적 매개변수 결정)

  • Kim Jong-Rae;Kim Joo-Cheal;Jeong Dong-Kook;Kim Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.593-603
    • /
    • 2006
  • The basin response to storm is regarded as nonlinearity inherently. In addition, the consistent nonlinearity of hydrologic system response to rainfall has been very tough and cumbersome to be treated analytically. The thing is that such nonlinear models have been avoided because of computational difficulties in identifying the model parameters from recorded data. The parameters of nonlinear system considered as dynamic effects in the conceptual model are optimized as the sum of errors between the observed and computed runoff is minimized. For obtaining the optimal parameters of functions, the historical data for the Bocheong watershed in the Geum river basin were tested by applying the numerical methods, such as quasi-linearization technique, Runge-Kutta procedure, and pattern-search method. The estimated runoff carried through from the storage function with dynamic effects was compared with the one of 1st-order differential equation model expressing just nonlinearity, and also done with Nash model. It was found that the 2nd-order model yields a better prediction of the hydrograph from each storm than the 1st-order model. However, the 2nd-order model was shown to be equivalent to Nash model when it comes to results. As a result, the parameters of nonlinear 2nd-order differential equation model performed from the present study provided not only a considerable physical meaning but also a applicability to Korean watersheds.

Enhanced Variable Structure Control With Fuzzy Logic System

  • Charnprecharut, Veeraphon;Phaitoonwattanakij, Kitti;Tiacharoen, Somporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.999-1004
    • /
    • 2005
  • An algorithm for a hybrid controller consists of a sliding mode control part and a fuzzy logic part which ar purposely for nonlinear systems. The sliding mode part of the solution is based on "eigenvalue/vector"-type controller is used as the backstepping approach for tracking errors. The fuzzy logic part is a Mamdani fuzzy model. This is designed by applying sliding mode control (SMC) method to the dynamic model. The main objective is to keep the update dynamics in a stable region by used SMC. After that the plant behavior is presented to train procedure of adaptive neuro-fuzzy inference systems (ANFIS). ANFIS architecture is determined and the relevant formulation for the approach is given. Using the error (e) and rate of error (de), occur due to the difference between the desired output value (yd) and the actual output value (y) of the system. A dynamic adaptation law is proposed and proved the particularly chosen form of the adaptation strategy. Subsequently VSC creates a sliding mode in the plant behavior while the parameters of the controller are also in a sliding mode (stable trainer). This study considers the ANFIS structure with first order Sugeno model containing nine rules. Bell shaped membership functions with product inference rule are used at the fuzzification level. Finally the Mamdani fuzzy logic which is depends on adaptive neuro-fuzzy inference systems structure designed. At the transferable stage from ANFIS to Mamdani fuzzy model is adjusted for the membership function of the input value (e, de) and the actual output value (y) of the system could be changed to trapezoidal and triangular functions through tuning the parameters of the membership functions and rules base. These help adjust the contributions of both fuzzy control and variable structure control to the entire control value. The application example, control of a mass-damper system is considered. The simulation has been done using MATLAB. Three cases of the controller will be considered: for backstepping sliding-mode controller, for hybrid controller, and for adaptive backstepping sliding-mode controller. A numerical example is simulated to verify the performances of the proposed control strategy, and the simulation results show that the controller designed is more effective than the adaptive backstepping sliding mode controller.

  • PDF

A Development of Coupled Wave-Induced Current Modeling System and Its application to the Idealized Shoreline with Detached Breakwater (연계 파랑류 수치모형 시스템의 개발 및 이안제가 설치된 해안에서의 적용)

  • Jang, Changhwan;Kim, Hyoseob;Ihm, Namjae
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.439-455
    • /
    • 2012
  • Coupled wave induced current modeling system(WIC) was developed from combining with the nearshore spectral wave model, SWAN, the wave induced force model, WIF, and the flow model, EFDC. The reasonable results were obtained from WIC modeling system. The ratio of the wave height calculated with respect to refraction and diffraction effects over submerged spherical shoal was occurred approximately 1~5 % errors compared to Goda(2000)'s result. The radiation stress suggested by Longuet-Higgins and Stewart(1960), the stresses due to rollers in breaking waves proposed by Dally and Osiecki(1994), and Kim(2004)'s new spreading approach instead of the previous lateral mixing approach were added to calculate wave induced force. The results of the WIC modeling system show good agreement with Nishimura et al.(1985)'s laboratory measurements and better than Kim(2004)'s 2 dimensional depth averaged numerical computations for a plane beach with detached breakwater. The present flow field computed agrees reasonably well with the measured flow field. The relative merit of WIF model in WIC modeling system is unconditional stable for time increment.

Load Sharing Ratios Between the Cortex and Centrum in a Lumbar Vertebral Body with aging using Finite Element Method (유한 요소 법을 이용한 노화에 따른 요추의 피질 골과 해면 골 간의 하중 분담 비율)

  • Lim, JongWan
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.90-103
    • /
    • 2016
  • This research was aimed to analyze load sharing ratios between cortical shell and trabecular bone of a degraded lumbar vertebra with aging, and also evaluate elastic moduli assigned into an FE model, using finite element method. For the better analysis of trabecular bone, effective elastic moduli, that is, nominal elastic moduli divided by the volumetric porosities was used. The elastic moduli of the cortical shell suitable for the trabecular bone were obtained from the equations on the basis of idealized stress-strain relations, including areal porosities. To minimize numerical errors, p-element was used. Using eight parameters that refer to some published papers, the geometry of L3 with a removed posterior part. After the constant compressive displacement was applied, the load sharing ratios were obtained by using both every elastic strain energy and every vertical force between two bones in each 8-volume. As results, 1) according to an increase in age from 20-year to 80-year, load sharing ratios of trabecular bone decreased from 55% to 49%; 2) the maximal ratios of each bone were occurred in the mid-plane of centrums and the endplate of cortical shells, respectively; 3) effective elastic moduli assigned into a porous centrum/cortex were found to be adequate; 4) for load sharing ratios, the difference of two methods showed that the total ratios were almost same within less than 1% but the partial ratios at every depth were more or less different each other.

Solution Algorithms for Logit Stochastic User Equilibrium Assignment Model (확률적 로짓 통행배정모형의 해석 알고리듬)

  • 임용택
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.95-105
    • /
    • 2003
  • Because the basic assumptions of deterministic user equilibrium assignment that all network users have perfect information of network condition and determine their routes without errors are known to be unrealistic, several stochastic assignment models have been proposed to relax this assumption. However. it is not easy to solve such stochastic assignment models due to the probability distribution they assume. Also. in order to avoid all path enumeration they restrict the number of feasible path set, thereby they can not preciously explain the travel behavior when the travel cost is varied in a network loading step. Another problem of the stochastic assignment models is stemmed from that they use heuristic approach in attaining optimal moving size, due to the difficulty for evaluation of their objective function. This paper presents a logit-based stochastic assignment model and its solution algorithm to cope with the problems above. We also provide a stochastic user equilibrium condition of the model. The model is based on path where all feasible paths are enumerated in advance. This kind of method needs a more computing demand for running the model compared to the link-based one. However, there are same advantages. It could describe the travel behavior more exactly, and too much computing time does not require than we expect, because we calculate the path set only one time in initial step Two numerical examples are also given in order to assess the model and to compare it with other methods.

Theory and Practice in the Tensile Strength Test for Split Ring Shaped Rock Specimen (터진고리 형태의 암석시편에 대한 인장강도 시험의 이론과 실제)

  • Choi, Byung-Hee;Lee, Youn-Kyou;Park, Chan;Park, Chulwhan
    • Explosives and Blasting
    • /
    • v.38 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • In this study the split ring (SR) test was investigated for its applicability to the measurement of the tensile strength of rock specimen of NX size. The concept of the SR test is the same as the half ring (HR) test (Choi et al., 2019) except that the expected fracture plane is perpendicular to the loading direction. Because of this perpendicularity, however, it was believed that the SR test could be more accurate than the HR test. Like the HR specimen, the SR specimen is a curved prismatic bar with a uniform section. Appealing to a basic bending theory in strength of materials, the tensile strength for the special bar can be calculated analytically. Numerical simulations using LS-DYNA revealed, as expected, that the strength errors were 1% and 5% for the tensional and compressional SR tests, respectively, which were much lower than that (12%) of the HR test. To identify the performance of the two SR tests, laboratory experiments were conducted. The HR and Brazilian tests were also performed for comparison. The experiments showed that the ratios of the tensional and compressional SR to Brazilian strengths were 1.2~1.4 and 1.1~1.2, respectively, which are too small compared to empirical values in ordinary bend tests. Consequently, it is concluded that the SR test is not appropriate for use in tensile strength test of rock specimen of NX size. But the ratio of the HR to Brazilian strengths was within 1.7~2.0 for both the previous and present studies, showing a good consistency in their test results.

Seasonal Trend of Elevation Effect on Daily Air Temperature in Korea (일별 국지기온 결정에 미치는 관측지점 표고영향의 계절변동)

  • 윤진일;최재연;안재훈
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.96-104
    • /
    • 2001
  • Usage of ecosystem models has been extended to landscape scales for understanding the effects of environmental factors on natural and agro-ecosystems and for serving as their management decision tools. Accurate prediction of spatial variation in daily temperature is required for most ecosystem models to be applied to landscape scales. There are relatively few empirical evaluations of landscape-scale temperature prediction techniques in mountainous terrain such as Korean Peninsula. We derived a periodic function of seasonal lapse rate fluctuation from analysis of elevation effects on daily temperatures. Observed daily maximum and minimum temperature data at 63 standard stations in 1999 were regressed to the latitude, longitude, distance from the nearest coastline and altitude of the stations, and the optimum models with $r^2$ of 0.65 and above were selected. Partial regression coefficients for the altitude variable were plotted against day of year, and a numerical formula was determined for simulating the seasonal trend of daily lapse rate, i.e., partial regression coefficients. The formula in conjunction with an inverse distance weighted interpolation scheme was applied to predict daily temperatures at 267 sites, where observation data are available, on randomly selected dates for winter, spring and summer in 2000. The estimation errors were smaller and more consistent than the inverse distance weighting plus mean annual lapse rate scheme. We conclude that this method is simple and accurate enough to be used as an operational temperature interpolation scheme at landscape scale in Korea and should be applicable to elsewhere.

  • PDF

Time-domain Seismic Waveform Inversion for Anisotropic media (이방성을 고려한 탄성매질에서의 시간영역 파형역산)

  • Lee, Ho-Yong;Min, Dong-Joo;Kwon, Byung-Doo;Yoo, Hai-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-56
    • /
    • 2008
  • The waveform inversion for isotropic media has ever been studied since the 1980s, but there has been few studies for anisotropic media. We present a seismic waveform inversion algorithm for 2-D heterogeneous transversely isotropic structures. A cell-based finite difference algorithm for anisotropic media in time domain is adopted. The steepest descent during the non-linear iterative inversion approach is obtained by backpropagating residual errors using a reverse time migration technique. For scaling the gradient of a misfit function, we use the pseudo Hessian matrix which is assumed to neglect the zero-lag auto-correlation terms of impulse responses in the approximate Hessian matrix of the Gauss-Newton method. We demonstrate the use of these waveform inversion algorithm by applying them to a two layer model and the anisotropic Marmousi model data. With numerical examples, we show that it's difficult to converge to the true model when we assumed that anisotropic media are isotropic. Therefore, it is expected that our waveform inversion algorithm for anisotropic media is adequate to interpret real seismic exploration data.

  • PDF

A Developmont of Numerical Mo del on the Estimation of the Log-term Run-off for the Design of Riverheads Works -With Special Reference to Small and Medium Sijed Catchment Areas- (제수원공 설계를 위한 장기간 연속수수량 추정모형의 개발 - 중심유역을 중심으로)

  • 엄병현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.59-72
    • /
    • 1987
  • Although long-term runoff analysis is important as much as flood analysis in the design of water works, the technological level of the former is relatively lower than that of the latter. In this respect, the precise estimation model for the volume of successive runoff should he developed as soon as possible. Up to now, in Korea, Gajiyama's formula has been widely used in long-term runoff analysis, which has many problems in applying in real situation. On the other hand, in flood analysis, unit hydrograph method has been exclusively used. Therefore, this study aims at trying to apply unit hydrograph method in long-term runoff analysis for the betterment of its estimation. Four test catchment areas were selected ; Maesan area in Namlum river as a representative area of Han river system, Cheongju area in Musim river as one of Geum river system, Hwasun area in Hwasun river as one of Yongsan river system, and Supyung area in Geum river as one of Nakdong river system. In the analysis of unit hydrograph, seperation of effective rainfall was carried out firstly. Considering that effective rainfall and moisture condition of catchrnent area are inside and outside of a phenomenon respectively and the latter is not considered in the analysis, Initial base flow(qb)was selected as an index of moisture condition. At the same time, basic equation(Eq.7) was established, in which qb can take a role as a parameter in relating between cumulative rainfall(P) and cumulative loss of rainfall(Ld). Based on the above equation, computer program for estimation model of qbwas seperately developed according to the range of qb, Developed model was applied to measured hydrographs and hyetographs for total 10 years in 4 test areas and effective rainfall was estimated. Estimation precision of model was checked as shown in Tab- 6 and Fig.8. In the next stage, based on the estimated effective rainfall(R) and runoff(Qd), a runoff distribution ratio was calculated for each teat area using by computerised least square method and used in making unit hydrographs in each test area. Significance of induced hydrographs was tested by checking the relative errors between estimated and measured runoff volume(Tab-9, 10). According to the results, runoff estimation error by unit hydrograph itself was merely 2 or 3 %, but other 2 or 3 % of error proved to be transferred error in the seperation of effective rainfall. In this study, special attentioning point is that, in spite of different river systems and forest conditions of test areas, standardized unit hydrographs for them have very similar curve shape, which can be explained by having similar catchinent characteristics such as stream length, catchinent area, slope, and vegetation intensity. That fact should be treated as important factor ingeneralization of unit hydrograph method.

  • PDF