• Title/Summary/Keyword: numerical errors

Search Result 878, Processing Time 0.029 seconds

Displacement-Load Method for Semi-Analytical Design Sensitivity Analysis (준해석 설계민감도를 위한 변위하중법)

  • Yoo Jung Hun;Kim Heung Seok;Lee Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1590-1597
    • /
    • 2004
  • Three methods of design sensitivity analysis for structures such as numerical method, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis can provide very exact result, it is difficult to implement into practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable fur most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate in nonlinear design sensitivity analysis because its computational cost depends on the number of design variables and large numerical errors can be included. Thus the semi-analytical method is more suitable for complicated design problems. Moreover, semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure fur the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and the computational technique is proposed for evaluating the partial differentiation of internal nodal force, so called pseudo-load. Numerical examples coupled with commercial finite element package are shown to verify usefulness of proposed semi-analytical sensitivity analysis procedure and computational technique for pseudo-load.

A Study of Stability Evaluation for Tunnel at the Fault Zone Crossing (단층대를 통과하는 터널의 안정성확보에 관한 연구)

  • 박인준;최정환;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.105-112
    • /
    • 2001
  • The purpose of this study is to assess the stability of tunnel for a high speed railway crossing the fault zone. The area where the tunnel crossed the fault zone can be unstable during construction and operation. Geotechnical investigations have been conducted to determine an optimum excavation method by obtaining the material properties around the fault zone and to check the stability of the tunnel. For the numerical analysis, the FLAC, numerical analysis code based on finite difference method, was utilized to analyze the behavior of the fault at three points having typical ground conditions. Based on the results of numerical analysis, the combinations of compaction grouting and LW grouting were determined as suitable methods for pre-excavation Improvement of the ground surrounding the tunnel opening. In conclusion, the stability of the tunnel construction for the high speed railway within the fault zone may be obtained by adopting the optimum excavation method and the reinforcement method. The numerical analysis based on FLAC program contains errors caused by assumptions used in numerical analysis, therefore constant monitoring with respect to the change of ground condition and groundwater is highly recommended to minimize the numerical error and the possibility of damage to tunnel.

  • PDF

A Study of Non-staggered Grid Approach for Incompressible Heat and Fluid Flow Analysis (비압축성 열유동 해석을 위한 비엇갈림 격자법에 대한 연구)

  • Kim Jongtae;Kim Sang-Baik;Kim Hee-Dong;Maeng Joo-sung
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.10-19
    • /
    • 2002
  • The non-staggered(collocated) grid approach in which all the solution variables are located at the centers of control volumes is very popular for incompressible flow analyses because of its numerical efficiency on the curvilinear or unstructured grids. Rhie and Chow's paper is the first in using non-staggered grid method for SIMPLE algorithm, where pressure weighted interpolation was used to prevent decoupling of pressure and velocity. But it has been known that this non-staggered grid method has stability problems when pressure fields are nonlinear like in natural convection flows. Also Rhie-Chow scheme generates large numerical diffusion near curved walls. The cause of these unwanted problems is too large pressure damping term compared to the magnitude of face velocity. In this study the magnitude of pressure damping term of Rhie-Chow's method is limited to 1∼10% of face velocity to prevent physically unreasonable solutions. The wall pressure extrapolation which is necessary for cell-centered FVM is another source of numerical errors. Some methods are applied in a unstructured FV solver and analyzed in view of numerical accuracy. Here, two natural convection problems are solved to check the effect of the Rhie-Chow's method on numerical stability. And numerical diffusion from Rhie-Chow's method is studied by solving the inviscid flow around a circular cylinder.

Study of Effects of Measurement Errors in Damage Detection (동적 측정오차가 손상탐지에 미치는 영향에 관한 연구)

  • Kim, Ki-Ook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.218-224
    • /
    • 2011
  • A modal method is presented for the investigation of the effects of measurement errors in damage detection for dynamic structural systems. The structural modifications to the baseline system result in the response changes of the perturbed structure, which are measured to determine a unique system in the inverse problem of damage detection. If the numerical modal data are exact, mathematical programming techniques can be applied to obtain the accurate structural changes. In practice, however, the associated measurement errors are unavoidable, to some extent, and cause significant deviations from the correct perturbed system because of the intrinsic instability of eigenvalue problem. Hence, a self-equilibrating inverse system is allowed to drift in the close neighborhood of the measured data. A numerical example shows that iterative procedures can be used to search for the damaged structural elements. A small set of selected degrees of freedom is employed for practical applicability and computational efficiency.

A Comparative Study on Hydraulic Characteristics of Curved Channel by Hydraulic Model Experiments and Numerical Analysis (수리모형과 수치해석을 통한 만곡부 하천의 수리학적 특성 비교 고찰)

  • Seo, Dong-Il;Choi, Han-Kuy
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.85-94
    • /
    • 2007
  • This study, regarding curved channel, was performed to compare and analyze hydraulic characteristics and the speed of water and water level for left bank and right bank through hydraulic model experiments and numerical analysis. Real channels that had characteristics of curved channel were selected as objectives. In order to easily operate one and two dimensional numerical analysis and comparison for total 2.4Km model channel, measuring point was set up as 200m. HEC-RAS model was applied as one dimensional numerical analysis program and SMS model was used as two dimensional numerical analysis program. In respect of speed of water, the average speed of water for right bank recorded 8.33m/s in a model experiment and 3.08m/s, 8.57m/s were average speed of water for right bank in one dimensional and two dimensional numerical analysis. The average speed of water of two dimensional numerical analysis was quite similar to that of model experiments. Also, as for water level, maximum observational errors between one and two dimensional numerical analysis for right and left bank of model experiments were 0.66m, 0.84m and 0.28m, 0.48m for each. It was found that two dimensional numerical analysis had a similar result to hydraulic model experiments. Accordingly, from the result of this study, two dimensional numerical analysis should be used rather than one dimensional numerical analysis, when numerical analysis for curved channel is conducted.

  • PDF

A numerical method for dynamic analysis of cam-follower mechanism including impact, separation and elastic deformation (충격분리 및 탄성변형을 포함한 캠-종동절 기구의 동역학적 해석을 위한 수치해석적 방법)

  • Lee, Gi-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.519-528
    • /
    • 1998
  • A numerical method is presented for the dynamic analysis of cam and follower. Contact and separation between the cam and the follower are analyzed by imposing dynamic contact condition. The correct solution is obtained without spurious oscillation by imposing the velocity and acceleration constraints as well as the displacement constraint on the possible contact point. The constraints are satisfied by iteratively reducing the constraint errors toward zero, and a simple time integration of ordinary differential equation is employed for the solution of the equation of motion. The solution procedure associated with the iterative scheme is presented, and numerical simulations are conducted to demonstrate the accuracy of the solution.

NUMERICAL PROPERTIES OF GAUGE METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.43-56
    • /
    • 2010
  • The representative numerical algorithms to solve the time dependent Navier-Stokes equations are projection type methods. Lots of projection schemes have been developed to find more accurate solutions. But most of projection methods [4, 11] suffer from inconsistency and requesting unknown datum. E and Liu in [5] constructed the gauge method which splits the velocity $u=a+{\nabla}{\phi}$ to make consistent and to replace requesting of the unknown values to known datum of non-physical variables a and ${\phi}$. The errors are evaluated in [9]. But gauge method is not still obvious to find out suitable combination of discrete finite element spaces and to compute boundary derivative of the gauge variable ${\phi}$. In this paper, we define 4 gauge algorithms via combining both 2 decomposition operators and 2 boundary conditions. And we derive variational derivative on boundary and analyze numerical results of 4 gauge algorithms in various discrete spaces combinations to search right discrete space relation.

Computational fluid dynamics simulation of pedestrian wind in urban area with the effects of tree

  • Chang, Cheng-Hsin
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.147-158
    • /
    • 2006
  • The purpose of this paper is to find a more accurate method to evaluate pedestrian wind by computational fluid dynamics approach. Previous computational fluid dynamics studies of wind environmental problems were mostly performed by simplified models, which only use simple geometric shapes, such as cubes and cylinders, to represent buildings and structures. However, to have more accurate and complete evaluation results, various shapes of blocking objects, such as trees, should also be taken into consideration. The aerodynamic effects of these various shapes of objects can decrease wind velocity and increase turbulence intensity. Previous studies simply omitted the errors generated from these various shapes of blocking objects. Adding real geometrical trees to the numerical models makes the calculating domain of CFD very complicated due to geometry generation and grid meshing problems. In this case the function of Porous Media Condition can solve the problem by adding trees into numerical models without increasing the mesh grids. The comparison results between numerical and wind tunnel model are close if the parameters of porous media condition are well adjusted.

Study on Numerical Method for Combustion-Gas Flow Field of Granular Type Solid Propellant (과립형 고체추진제의 연소가스 유동장 해석을 위한 수치해석 기법 연구)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Roh, Tae-Seong;Choi, Dong-Whan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.551-554
    • /
    • 2008
  • In this study, numerical methods for the code development of the interior ballistics have been conducted. Mathematical models and numerical methods for the analysis technique of the granular solid propellants have been investigated. As the results of applying the methods of errors have been generated by calculation for the specific surface area of the granular solid propellants. To remove these error, the developed Eulerian-Larangian method for multiphase flows has been suggested.

  • PDF

Reassessment on numerical results by the continuum model (연속체모델에 의한 수치해석결과에 대한 재평가)

  • Jeong, Jae-Dong;Yu, Ho-Seon;No, Seung-Tak;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3926-3937
    • /
    • 1996
  • In recent years there has been increased interest in the continuum model associated with the solidification of binary mixtures. A review of the literature, however, shows that the model verification was not sufficient or only qualitative. Present work is conducted for the reassessment of continuum model on the solidification problems of binary mixtures widely used for model validation. In spite of using the same continuum model, the results do not agree well with those of Incropera and co-workers which are benchmark problems typically used for validation of binary mixture solidification. Inferring from the agreement of present results with the analytic, experimental and other model's numerical results, this discrepancy seems to be caused by numerical errors in applying continuum model developed by Incropera and co-workers, not by the model itself. Careful examination should be preceded before selecting validation problems.