• Title/Summary/Keyword: numerical calculation

Search Result 2,395, Processing Time 0.03 seconds

Development of 3D Reverse Time Migration Software for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 3차원 역시간 구조보정 프로그램 개발)

  • Kim, Dae-sik;Shin, Jungkyun;Ha, Jiho;Kang, Nyeon Keon;Oh, Ju-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.109-119
    • /
    • 2022
  • The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.

Study on collapse mechanism and treatment measures of portal slope of a high-speed railway tunnel

  • Guoping Hu;Yingzhi Xia;Lianggen Zhong;Xiaoxue Ruan;Hui Li
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.111-123
    • /
    • 2023
  • The slope of an open cut tunnel is located above the exit of the Leijia tunnel on the Changgan high-speed railway. During the excavation of the open cut tunnel foundation pit, the slope slipped twice, a large landslide of 92500 m3 formed. The landslide body and unstable slope body not only caused the foundation pit of the open cut tunnel to be buried and the anchor piles to be damaged but also directly threatened the operational safety of the later high-speed railway. Therefore, to study the stability change in the slope of the open cut tunnel under heavy rain and excavation conditions, a 3D numerical calculation model of the slope is carried out by Midas GTS software, the deformation mechanism is analyzed, anti-sliding measures are proposed, and the effectiveness of the anti-sliding measures is analyzed according to the field monitoring results. The results show that when rainfall occurs, rainwater collects in the open cut tunnel area, resulting in a transient saturation zone on the slope on the right side of the open cut tunnel, which reduces the shear strength of the slope soil; the excavation at the slope toe reduces the anti-sliding capacity of the slope toe. Under the combined action of excavation and rainfall, when the soil above the top of the anchor pile is excavated, two potential sliding surfaces are bounded by the top of the excavation area, and the shear outlet is located at the top of the anchor pile. After the excavation of the open cut tunnel, the potential sliding surface is mainly concentrated at the lower part of the downhill area, and the shear outlet moves down to the bottom of the open cut tunnel. Based on the deformation characteristics and the failure mechanism of the landslides, comprehensive control measures, including interim emergency mitigation measures and long-term mitigation measures, are proposed. The field monitoring results further verify the accuracy of the anti-sliding mechanism analysis and the effectiveness of anti-sliding measures.

A Study on Improving the Current Density Distribution of the Cathode by the Bipolar Phenomenon of the Auxiliary Anode through the Hull Cell Experiment (헐셀을 통한 보조 양극의 바이폴라 현상에 의한 음극의 전류밀도 분포 개선 영향성 연구)

  • Young-Seo Kim;Yeon-Soo Jeong;Han-Kyun Shin;Jung Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.71-78
    • /
    • 2023
  • The possibility of improving plating thickness distribution was investigated through quantitative consideration of bipolar electrodes without external power applied. By having the cathode tilted with respect to the anode, the potential distribution in the electrolyte solution adjacent to the cathode is different due to the difference in iR drop due to the path difference to the anode in each region of the cathode. The purpose of this study is to observe the bipolar characteristics in the case of an auxiliary anode for the non-uniform potential distribution of such a Hull cell. In particular, in order to evaluate the possibility of improving the non-uniform thickness distribution of the cathode by utilizing these bipolar characteristics, it was verified through experiments and simulations, and the electric potential and current density distribution around the bipolar electrode were analyzed. The electroplating in a Hull cell was performed for 75 min at a current density of 10 mA/cm2, and the average thickness is about 16 ㎛. The standard deviation of the thickness was 10 ㎛ in the normal Hull cell without using the auxiliary anode, whereas it was 3.5 ㎛ in the case of using the auxiliary cathode. Simulation calculations also showed 8.9 ㎛ and 3.3 ㎛ for each condition, and it was found that the consistency between the experimental and simulation results was relatively high, and the thickness distribution could be improved through using the auxiliary anode by the bipolar phenomenon.

Determination of Mode Dispersion Curves of Surface Wave Using HWAW Method (HWAW(Harmonic Wavelet Analysis of Wave)방법을 이용한 표면파 모드 분산곡선의 결정)

  • Park, Hyung-Choon;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.15-24
    • /
    • 2006
  • The evaluation of shear modulus is very important in various fields of civil engineering. Non-destructive seismic methods can be used to determine shear wave velocity ($V_s$) profile. Non-destructive seismic methods geneally consist of three steps: field testing, evaluation of dispersion curve, and determination of Vs profile by inversion process. Non-destructive seismic methods can be divided into two categories according to the number of receivers used for data reduction: two-channel tests and multi-channel tests. Two channel tests use apparent velocity dispersion curve and multi-channel tests use mode dispersion curves. Multi-channel tests using mode dispersion curve can reduce calculation time to determine soil profile and uncertainties in inversion process. So far, only multi-channel tests can determine mode dispersion curves but multi-channel test needs many receivers to determine reasonable mode dispersion curves. In this paper, HWAW (Harmonic Wavelet Analysis of Wave) method is applied to determine mode dispersion curves. HWAW method uses short test setup which consists of two receivers with a spacing of 1 to 3 m. Through numerical simulations and field application, it is shown that HWAW can determine resonable mode disperson curves.

Characteristics of Collapsed Retaining Walls Using Elasto-plastic Method and Finite Element Method (탄소성 방법과 유한요소법에 의한 붕괴 토류벽의 거동차이 분석)

  • Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.19-29
    • /
    • 2009
  • In this study, a numerical analysis was performed to predict the sequential behavior of anchored retaining wall where the failure accident took place, and verified accuracy of prediction through the comparisons between prediction and field measurement. The emphasis was given to the wall behaviors and the variation of sliding surface based on the two different methods of elasto-plastic and finite element (shear strength reduction technique). Through the comparison study, it is shown that the bending moment and the soil pressure at construction stages produce quite similar results in both the elasto-plastic and finite element method. However, predicted wall deflections using elasto-plastic method show underestimate results compared with measured deflections. This demonstrates that the elasto-plastic method does not clearly consider the influence of soil-wall-reinforcement interaction, so that the tension force (anchor force and earth pressure) on the wall is overestimated. Based on the results obtained, it is found that finite element method using shear strength reduction method can be effectively used to perform the back calculation analysis in the anchored retaining wall, whereas elasto-plastic method can be applicable to the preliminary design of retaining wall with suitable safety factor.

Development of Machine Learning Model Use Cases for Intelligent Internet of Things Technology Education (지능형 사물인터넷 기술 교육을 위한 머신러닝 모델 활용 사례 개발)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.449-457
    • /
    • 2024
  • AIoT, the intelligent Internet of Things, refers to a technology that collects data measured by IoT devices and applies machine learning technology to create and utilize predictive models. Existing research on AIoT technology education focused on building an educational AIoT platform and teaching how to use it. However, there was a lack of case studies that taught the process of automatically creating and utilizing machine learning models from data measured by IoT devices. In this paper, we developed a case study using a machine learning model for AIoT technology education. The case developed in this paper consists of the following steps: data collection from AIoT devices, data preprocessing, automatic creation of machine learning models, calculation of accuracy for each model, determination of valid models, and data prediction using the valid models. In this paper, we considered that sensors in AIoT devices measure different ranges of values, and presented an example of data preprocessing accordingly. In addition, we developed a case where AIoT devices automatically determine what information they can predict by automatically generating several machine learning models and determining effective models with high accuracy among these models. By applying the developed cases, a variety of educational contents using AIoT, such as prediction-based object control using AIoT, can be developed.

Improving the Accuracy of the Mohr Failure Envelope Approximating the Generalized Hoek-Brown Failure Criterion (일반화된 Hoek-Brown 파괴기준식의 근사 Mohr 파괴포락선 정확도 개선)

  • Youn-Kyou Lee
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.355-373
    • /
    • 2024
  • The Generalized Hoek-Brown (GHB) criterion is a nonlinear failure criterion specialized for rock engineering applications and has recently seen increased usage. However, the GHB criterion expresses the relationship between minimum and maximum principal stresses at failure, and when GSI≠100, it has disadvantage of being difficult to express as an explicit relationship between the normal and shear stresses acting on the failure plane, i.e., as a Mohr failure envelope. This disadvantage makes it challenging to apply the GHB criterion in numerical analysis techniques such as limit equilibrium analysis, upper-bound limit analysis, and the critical plane approach. Consequently, recent studies have attempted to express the GHB Mohr failure envelope as an approximate analytical formula, and there is still a need for continued interest in related research. This study presents improved formulations for the approximate GHB Mohr failure envelope, offering higher accuracy in predicting shear strength compared to existing formulas. The improved formulation process employs a method to enhance the approximation accuracy of the tangential friction angle and utilizes the tangent line equation of the nonlinear GHB failure envelope to improve the accuracy of shear strength approximation. In the latter part of this paper, the advantages and limitations of the proposed approximate GHB failure envelopes in terms of shear strength prediction accuracy and calculation time are discussed.

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Effect of Nitrogen Impurity on Process Design of $CO_2$ Marine Geological Storage: Evaluation of Equation of State and Optimization of Binary Parameter (질소 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태방정식의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.217-226
    • /
    • 2009
  • Marine geological storage of $CO_2$ is regarded as one of the most promising options to response climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_x$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of the present paper is to compare and analyse the relevant equations of state including PR, PRBM, RKS and SRK equation of state for $CO_2-N_2$ mixture. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $N_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable equation of state and relevant binary parameter in designing the $CO_2-N_2$ mixture marine geological storage process.

  • PDF