초고해상 3차원 탄성파 탐사를 통하여 취득된 자료는 수백 Hz 이상의 높은 주파수 대역에 의하여 수치 모델링에 기반 한 역시간 구조보정의 계산효율성이 확보되지 않는다. 이에 본 연구에서는 초고해상 탐사자료를 활용하여 고품질의 3차원 지질구조를 효율적으로 도출할 수 있는 역시간 구조보정 프로그램을 개발하였다. 우리는 전통적인 3차원 역시간 구조보정 프로그램의 메모리 사용량 및 계산시간을 대폭 축소하기 위하여 음원 파동장의 최대 진폭만을 저장하여 영상화를 수행하는 여기진폭 기법과 연산 영역을 음원과 수신기가 위치한 최소한의 영역인 로컬 도메인으로 제한하는 기법을 적용하였다. 본 연구를 통해 개발된 프로그램은 2019년에 한국지질자원연구원에서 획득한 초고해상 3차원 탄성파 탐사 자료에 대하여 수평방향 격자 크기가 1 m인 3차원 구조보정 영상을 성공적으로 도출하였으며 지질학적인 해석이 수행되었다.
Guoping Hu;Yingzhi Xia;Lianggen Zhong;Xiaoxue Ruan;Hui Li
Geomechanics and Engineering
/
제32권1호
/
pp.111-123
/
2023
The slope of an open cut tunnel is located above the exit of the Leijia tunnel on the Changgan high-speed railway. During the excavation of the open cut tunnel foundation pit, the slope slipped twice, a large landslide of 92500 m3 formed. The landslide body and unstable slope body not only caused the foundation pit of the open cut tunnel to be buried and the anchor piles to be damaged but also directly threatened the operational safety of the later high-speed railway. Therefore, to study the stability change in the slope of the open cut tunnel under heavy rain and excavation conditions, a 3D numerical calculation model of the slope is carried out by Midas GTS software, the deformation mechanism is analyzed, anti-sliding measures are proposed, and the effectiveness of the anti-sliding measures is analyzed according to the field monitoring results. The results show that when rainfall occurs, rainwater collects in the open cut tunnel area, resulting in a transient saturation zone on the slope on the right side of the open cut tunnel, which reduces the shear strength of the slope soil; the excavation at the slope toe reduces the anti-sliding capacity of the slope toe. Under the combined action of excavation and rainfall, when the soil above the top of the anchor pile is excavated, two potential sliding surfaces are bounded by the top of the excavation area, and the shear outlet is located at the top of the anchor pile. After the excavation of the open cut tunnel, the potential sliding surface is mainly concentrated at the lower part of the downhill area, and the shear outlet moves down to the bottom of the open cut tunnel. Based on the deformation characteristics and the failure mechanism of the landslides, comprehensive control measures, including interim emergency mitigation measures and long-term mitigation measures, are proposed. The field monitoring results further verify the accuracy of the anti-sliding mechanism analysis and the effectiveness of anti-sliding measures.
외부로부터 전원이 인가되지 않은 바이폴라 전극의 정량적 고찰을 통해 도금 두께 산포 개선의 가능성을 살펴보고자 하였다. 헐셀은 양극에 대해 기울어진 음극을 가짐으로써, 음극의 각 영역에서 양극에 대한 경로차에 의한 iR drop의 차이로 음극 근처의 전해액에서는 전위 분포가 다르게 되어 한눈에 다양한 반응 과전압에서의 전기화학적 반응성을 평가할 수 있다. 본 연구는 이러한 헐셀의 불균일한 전위분포에 대해 보조 양극이 있는 경우에 바이폴라 특성을 관찰하고자 하였다. 특히 이러한 바이폴라 특성을 활용하여 음극의 불균일 두께 산포를 개선할 수 있는 가능성을 평가하기 위해, 실험 및 시뮬레이션을 통해 검증하였으며, 이를 통해 바이폴라가 형성된 주변의 전위 및 전류밀도 분포를 분석해 보았다. 10 mA/cm2 전류밀도로 75분동안 도금을 진행하여, 평균 두께가 약 16 ㎛로 도금을 진행하였다. 보조 양극을 사용하지 않은 일반 헐셀에서는 두께의 표준 편차가 10 ㎛인 반면에 보조 양극을 사용한 경우에는 3.5 ㎛로 나타났다. 시뮬레이션 계산에서도 8.9 ㎛와 3.3 ㎛로 나타났으며, 비교적 실험결과와 시뮬레이션 결과의 정합성이 높은 것으로 나타났다. 이러한 보조 양극을 통해 외부에서 전원 인가를 하지 않더라도 바이폴라 현상에 의해 두께 산포가 개선될 수 있음을알 수 있었다.
공학적 물성치로서의 저변형율에서의 전단탄성계수의 결정은 다양한 토목분야에서 매우 중요하다. 이러한 지반의 전단 파탄성계수 주상도는 비파괴 탄성파 실험을 통하여 결정될 수 있다. 비파괴 탄성파 실험은 대상지반의 분산곡선을 결정하고, 결정된 분산곡선에 대한 역산을 수행하여 대상지반의 전단파탄성계수 주상도를 결정한다. 이러한 비파괴 탄성파 실험은 결정되는 분산곡선의 종류에 따라 크게 두가지로 구분할 수 있다. 첫번째는 겉보기 속도 분산곡선을 사용하는 방법과, 두번째는 모드 분산곡선을 사용하는 방법이다. 모드 분산곡선을 결정, 역산에 사용하는 방법의 경우, 계산 시간의 감소와 역산의 모호성을 감소시킬 수 있다. 모드 분산곡선을 결정하기 위해서는 다수의 감지기를 사용하는 다채널 표면파 실험을 통해서만 가능하다. 이러한 다수 감지기의 필요성은 현장에서의 실제 적용에 있어 실용성을 떨어뜨릴 수 있다. 본 논문에서는 HWAW방법을 표면파 모드 분해 및 모드 분산곡선 결정에 적용하였다. 제안된 방법은 $1{\sim}3m$의 감지기 간격을 가지는 2개의 감지기를 사용하는 짧은 실험구성을 사용하여 대상지반의 모드 분산곡선을 결정한다. 제안된 방법을 검증하기 위하여 수치 모의 실험과 현장실험을 수행하였으며, 이를 통하여 제안된 방법의 타당성을 확인할 수 있었다.
본 연구에서는 실제 붕괴가 발생한 토류벽을 대상으로 해석 기법에 따른 시공단계별 거동특성을 분석하기 위하여, 단계별 굴착에 따른 토류벽의 변위, 휨모멘트, 토압분포, 예상 활동 파괴면을 수치해석을 통해 분석하였다. 특히 수치해석에 사용되는 해석기법으로, 벽계와 지반의 상호작용이 고려되는 전단강도 감소기법과 상호작용을 고려하지 않는 탄소성 해석으로 나누어 해석기법에 따른 벽체의 거동 차이를 비교 하였다. 본 연구결과, 벽체의 휨모멘트와 토압은 해석기법에 따른 차이가 크지 않았지만, 지표 근처에서의 벽체 변위는 큰 차이를 나타냈다. 또한 실측 데이터와의 비교결과 탄소성 해석을 통한 해석 결과가 전단강도 감소기법을 통한 해석 결과보다 전체적으로 변위 및 파괴면 예측에서 과소 평가 되는 것으로 나타났다. 따라서, 전단강도 감소기법을 통한 유한요소 해석은 벽체의 시공 안정성 및 붕괴 후 원인 분석 등의 좀 더 세밀한 검토가 필요한 작업에서 유용하게 사용할 수 있으며, 탄소성 해석기법은 1차적인 설계 정도에 사용하여야 할 것으로 판단된다.
지능형 사물인터넷인 AIoT는 IoT 디바이스가 측정한 데이터를 수집하고 머신러닝 기술을 적용해 예측 모델을 만들어 활용하는 기술을 의미한다. AIoT 기술 교육을 위한 기존 연구에서는 교육용 AIoT 플랫폼 구축하고 사용법을 교육하는 데 초점을 맞추었다. 그러나, IoT 디바이스가 측정한 데이터로부터 머신러닝 모델이 자동 생성되고 활용되는 과정을 교육하는 사례 연구는 부족하였다. 본 논문에서는 AIoT 기술 교육을 위한 머신러닝 모델 활용 사례를 개발하였다. 본 논문에서 개발한 사례는 AIoT 디바이스의 데이터 수집, 데이터 전처리, 머신러닝 모델 자동 생성, 모델별 정확도 산출 및 유효 모델 결정, 유효 모델을 활용한 데이터 예측 단계들로 구성되었다. 본 논문에서는 AIoT 디바이스의 센서들이 서로 다른 범위의 값들을 측정하는 것을 고려하였고, 이에 따른 데이터 전처리 사례를 제시하였다. 또한 여러 머신러닝 모델들을 자동 생성하고 이 모델들 중 정확도가 높은 유효모델을 결정하여, AIoT 디바이스가 어떤 정보를 예측할 수 있는 가를 스스로 결정하는 사례를 개발하였다. 개발한 사례를 적용하면, AIoT를 활용한 예측기반 사물 제어와 같은 AIoT 활용 교육 콘텐츠를 다양하게 개발할 수 있다.
일반화된 Hoek-Brown (GHB) 식은 암반공학적 활용에 특화된 비선형 파괴기준식이며 최근 활용 빈도가 증가하고 있다. 그러나 GHB 식은 파괴 시점의 최소주응력과 최대주응력의 관계식이며 GSI≠100이면 파괴면에 작용하는 수직응력과 전단응력의 명시적 관계식 즉, Mohr 파괴포락선식으로 표현이 어렵다는 단점을 가지고 있다. 이 단점으로 인해 GHB 식을 한계평형해석, 상계한계해석, 임계평면법 등과 같은 수치해석기법에 적용하는 것이 쉽지 않다. 이에 따라 최근 GHB Mohr 파괴포락선을 근사적인 해석식으로 표현하려는 연구가 시도되고 있으며 관련 연구에 대한 지속적 관심이 여전히 필요하다. 이 연구에서는 기존 식보다 전단강도 예측 정확도가 높은 근사 GHB Mohr 파괴포락선 수식화 방법을 제시하였다. 개선된 수식화 과정에서는 접선마찰각의 근사 정확도를 높이는 방법과 비선형 GHB 파괴포락선의 접선식을 활용하여 전단강도 근사값의 정확도를 높이는 방법이 이용되었다. 이 논문의 후반부에서는 전단강도 예측 정확성과 계산시간 측면에서 제안된 근사 GHB 파괴포락선들의 장단점을 논의하였다.
본 논문에서는 국제공동연구인 DECOVALEX-2019 프로젝트 Task B의 연구결과와 현황을 소개하였다. Task B의 주제는 'Fault slip modelling'으로 유체의 주입으로 인해 발생하는 단층의 재활성(미끄러짐, 전단파괴)과 수리역학적 거동을 예측할 수 있는 해석기법을 개발하는 데에 그 목적이 있다. 1단계 연구는 참가팀들이 연구주제에 대해 숙지하고, 벤치마크 모델을 대상으로 단층의 투수특성과 역학적 거동의 상호작용을 모사할 수 있는 해석코드를 개발할 수 있도록 하는 준비 단계의 연구이다. 본 연구에서는 TOUGH-FLAC 연동해석 기법을 사용하여 물 주입으로 인한 단층의 수리역학적 연계거동을 모사하였다. TOUGH2 해석에서는 단층을 Darcy의 법칙과 삼승법칙을 따르는 연속체 요소로 모델링하였으며, FLAC3D 해석에서는 미끄러짐과 개폐가 허용되는 불연속 인터페이스 요소를 통해 모사하였다. 두 가지 수리간극모델에 대하여 수리역학적 커플링 관계식을 수치화하였으며, 연속체 요소(수리모델)와 인터페이스 요소(역학모델)의 거동을 연계할 수 있는 해석기법을 제시하였다. 또한, 단층의 역학적 변형(간극의 변화)으로 인한 수리물성 변화와 기하학적 변화(해석 메쉬의 변형)를 수리해석에 반영할 수 있는 해석기법을 개발하였다. 다양한 압력의 물을 단계적으로 주입하고 이로 인해 유도되는 단층의 탄성거동 및 전단파괴(미끄러짐)에 대해 살펴보았으며, 수리간극의 변화 양상과 원인, 압력 분포와 주입율의 관계 등을 면밀히 검토하였다. 해석 결과, 본 연구에서 개발한 해석기법이 물 주입으로 인한 단층의 미끄러짐 거동을 합리적인 수준에서 재현할 수 있는 것으로 판단할 수 있었다. 본 연구의 해석모델은 Task B에 참여하는 국외 연구팀들과의 의견 교류와 워크숍을 통해 지속적으로 개선하는 한편, 향후 연구의 현장시험에 적용하여 타당성을 검증할 예정이다.
화석연료를 사용하는 발전소 및 제철소 등 대규모 발생원에서 배출되는 $CO_2$를 포집하고 이를 대수층이나 유가스전과 같은 지질학적 구조에 장기간 저장하는 이산화탄소 포집 및 저장기술(Carbon dioxide Capture and Storage, CCS)이 기후변화 대응기술로서 국내외적으로 주목 받고 있다. 이와 같은 CCS 기술을 구현하기 위해서는 포집된 대용량의 $CO_2$ 혼합물을 파이프라인이나 선박 등을 통해 수송하는 과정이 필요하고, 이러한 공정에 대한 기존의 연구는 주로 순수 $CO_2$를 대상으로 하여 진행되어 왔다. 그러나 일반적으로 발전소 및 제철소 등에서 포집된 $CO_2$ 혼합물에는 $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$ 등과 같은 불순물들을 포함하고 있다. 이러한 $CO_2$ 혼합물 내 불순물들은 처리하고자 하는 $CO_2$ 혼합물의 열역학 상태량 등을 변화시킴으로써 압축, 정제, 수송 및 저장 공정들에 커다란 영향을 미칠 수 있다. 본 논문에서는 이러한 불순물 중 황성분이 함유된 $SO_2$가 포함된 $CO_2$ 혼합물의 수송 및 저장 공정을 설계하는데 있어 매우 중요한 $CO_2$ 혼합물의 열역학 거동을 모사하기 위한 상태량 모델들을 비교 분석하였다. 이를 위해 BWRS EOS, PR EOS, PRBM EOS, RKS EOS, SRK EOS 그리고 NRTL-RK 모델과 같은 총 6가지 물리적 상태량 모델을 이용하여 $CO_2-SO_2$ 혼합물의 VLE 거동을 수치계산하고 이를 실험 데이터와 비교하였다. 또한, $CO_2$, $SO_2$와 같은 서로 다른 분자간의 상호작용 효과를 보완하기 위하여 상태량 모델을 이용한 계산결과와 실험결과와의 차이를 정량화하여 각각의 상태량 모델의 예측능력을 계량화 비교분석하였고 이로부터 $CO_2-SO_2$ 혼합물에 대한 최적의 이성분 매개변수 값들을 도출하였다.
발전소 및 제철소 등 대규모 발생원에서부터 포집한 $CO_2$ 혼합물을 파이프라인이나 선박 등을 통해 수송하고, 이를 해양의 퇴적층에 수백-수천 년 이상 장기간 격리 및 관리하는 $CO_2$ 해양지중저장기술이 기후변화 대응기술로서 국내외적으로 주목 받고 있다. 본 CO2 저장기술을 구현하기 위한 수송 및 저장 공정에 대한 기존의 연구는 주로 순수 $CO_2$를 대상으로 하여 진행되어 왔다. 그러나 일반적으로 발전소 및 제철소 등에서 포집된 $CO_2$ 혼합물에는 $N_2$, $O_2$, Ar, $H_2O$, $SO_x$, $H_2S$ 등과 같은 불순물들을 포함하고 있다. 이러한 $CO_2$ 혼합물 내 불순물들은 처리하고자 하는 $CO_2$ 혼합물의 열역학 상태량 등을 변화시킴으로써 압축, 정제, 수송 및 저장 공정들에 커다란 영향을 미칠 수 있다. 본 논문에서는 이러한 불순물 중 불활성 가스인 $N_2$가 포함된 $CO_2$ 혼합물의 수송 및 저장 공정을 설계하는데 있어 매우 중요한 $CO_2$ 혼합물의 열역학 거동을 모사하기 위한 열역학 상태방정식들을 비교 분석하였다. 또한, $CO_2$, $N_2$와 같은 서로 다른 분자간의 상호작용 효과를 보완하기 위하여 사용되는 이성분 매개변수에 대한 최적 값을 도출하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.