• 제목/요약/키워드: numeric prediction

검색결과 28건 처리시간 0.023초

Predicting numeric ratings for Google apps using text features and ensemble learning

  • Umer, Muhammad;Ashraf, Imran;Mehmood, Arif;Ullah, Saleem;Choi, Gyu Sang
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.95-108
    • /
    • 2021
  • Application (app) ratings are feedback provided voluntarily by users and serve as important evaluation criteria for apps. However, these ratings can often be biased owing to insufficient or missing votes. Additionally, significant differences have been observed between numeric ratings and user reviews. This study aims to predict the numeric ratings of Google apps using machine learning classifiers. It exploits numeric app ratings provided by users as training data and returns authentic mobile app ratings by analyzing user reviews. An ensemble learning model is proposed for this purpose that considers term frequency/inverse document frequency (TF/IDF) features. Three TF/IDF features, including unigrams, bigrams, and trigrams, were used. The dataset was scraped from the Google Play store, extracting data from 14 different app categories. Biased and unbiased user ratings were discriminated using TextBlob analysis to formulate the ground truth, from which the classifier prediction accuracy was then evaluated. The results demonstrate the high potential for machine learning-based classifiers to predict authentic numeric ratings based on actual user reviews.

여러 가지 Inductive 방법에 대한 통합모델 개발과 그 실증적 유효성에 대한 연구 (The Development of Hybrid Model and Empirical Study for the Several Inductive Approaches)

  • 김광용
    • 한국경영과학회지
    • /
    • 제23권3호
    • /
    • pp.185-207
    • /
    • 1998
  • This research investigates computer generated hybrid second-order model of two numerically based approaches to risk classification : discriminant analysis and neural networks. The hybrid second-order models are derived by rule induction using the ID3 and tested in the several different kinds of data. This new hybrid approach is designed to combine the high prediction accuracy and robustness of DA or NN with perspicuity of ID3. The hybrid model also eliminates the problem of contradictory inputs of ID3. After doing empirical test for the validity of hybrid model using small and medium companies' bankrupt data, hybrid model shows high perspicuity, high prediction accuracy for bankrupt, and simplicity for rules. The hybrid model also shows high performance regardless the type of data such as numeric data, non-numeric data, and combined data.

  • PDF

수치 예측 알고리즘 기반의 풍속 예보 모델 학습 (Learning Wind Speed Forecast Model based on Numeric Prediction Algorithm)

  • 김세영;김정민;류광렬
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권3호
    • /
    • pp.19-27
    • /
    • 2015
  • 대체 에너지 기술 개발을 위해 지난 20년 동안 풍력 발전에 관련한 기술들이 축적되어왔다. 풍력 발전은 자연적으로 부는 바람을 에너지원으로 사용하므로 환경 친화적이며 경제적이다. 이러한 풍력 발전의 효율적인 운영을 위해서는 시시각각 변하는 자연 바람의 세기를 정확도 높게 예측할 수 있어야 한다. 풍속을 평균적으로 얼마나 정확하게 잘 예측하는지도 중요하지만 실제 값과 예측 값의 절대 오차의 최댓값을 최소화시키는 것 또한 중요하다. 발전 운영 계획 측면에서 예측 풍속을 통한 예측 발전량과 실제 발전량의 차이는 경제적 손실을 가져오는 원인이 되므로 유연한 운영 계획을 세우기 위해 최대 오차가 중요한 역할을 한다. 본 논문에서는 풍속 예측 방법으로 과거 풍속 변화 추세뿐만 아니라 기상청 예보와 시기적인 풍속의 특성을 고려하기 위한 경향 값을 반영하여 수치 예측 알고리즘으로 학습한 풍속 예보 모델을 제안한다. 기상청 예보는 풍력 발전 단지를 포함하는 비교적 넓은 지역의 풍속을 예보하지만 풍속을 예측하고자 하는 국소지점에 대한 풍속 예측의 정확도를 높이는데 상당히 기여한다. 또한 풍속 변화 추세는 긴 시간동안 관측한 풍속을 세세하게 반영할수록 풍속 예측의 정확도를 높인다.

해양사고 예보 시스템 개발 (II): 해양사고 예측 모델 (Development of Marine Casualty Forecasting System (II): Marine Casualty Prediction Model)

  • 임정빈;공길영;구자영;김창경
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2003년도 춘계공동학술대회논문집
    • /
    • pp.60-65
    • /
    • 2003
  • 이 논문에서는 해양사고 예보 시스템 (MCFS)의 주요 부분 중 하나인 해양사고 예측 모델 개발에 관해서 기술했다. 셀분할 선형 파라미터 모델(CD-LIP)을 개발하여 Baltic 모델과 희귀 분산분석기법으로 비교하였다. 그 결과, CD-LIP 모델이 Baltic 모델과 비교하여 잔차가 작았으며, 연구대상지역의 해양사고 수량화 D/B에 최적 성능을 나타냈다.

  • PDF

자연어 처리 및 기계학습을 통한 동의보감 기반 한의변증진단 기술 개발 (Donguibogam-Based Pattern Diagnosis Using Natural Language Processing and Machine Learning)

  • 이승현;장동표;성강경
    • 대한한의학회지
    • /
    • 제41권3호
    • /
    • pp.1-8
    • /
    • 2020
  • Objectives: This paper aims to investigate the Donguibogam-based pattern diagnosis by applying natural language processing and machine learning. Methods: A database has been constructed by gathering symptoms and pattern diagnosis from Donguibogam. The symptom sentences were tokenized with nouns, verbs, and adjectives with natural language processing tool. To apply symptom sentences into machine learning, Word2Vec model has been established for converting words into numeric vectors. Using the pair of symptom's vector and pattern diagnosis, a pattern prediction model has been trained through Logistic Regression. Results: The Word2Vec model's maximum performance was obtained by optimizing Word2Vec's primary parameters -the number of iterations, the vector's dimensions, and window size. The obtained pattern diagnosis regression model showed 75% (chance level 16.7%) accuracy for the prediction of Six-Qi pattern diagnosis. Conclusions: In this study, we developed pattern diagnosis prediction model based on the symptom and pattern diagnosis from Donguibogam. The prediction accuracy could be increased by the collection of data through future expansions of oriental medicine classics.

해양사고 예보 시스템 개발(I): 해양사고 수량화 D/B구축과 분석 (Development of Marine Casualty Forecasting System (I). Construction and Analysis of Marine Casualty Numerical D/B)

  • 임정빈
    • 한국항해항만학회지
    • /
    • 제27권4호
    • /
    • pp.359-366
    • /
    • 2003
  • 이 논문은 대한민국 해양사고 예보 시스템 (K-MACFOS)을 개발하기 위한 해양사고 수량화 D/B (N-D/B) 구성과 분석에 관하여 기술하였다. K-MACFOS의 주목표는 일기예보와 같이 해양사고의 예측건수와 위험수준을 방송하기 위한 것이다. 해양사고 데이터는 1990년부터 2000년까지 1년간 위도 33oN∼35oN와 경도 124oE∼127oE의 대한민국 서남해안 일대에서 발생한 총 724건을 수집하였고, 14가지 수량화변환 척도를 이용하여 양적 데이터로 변환하였다. 컬러 콘도-맵 가시화를 이용한 통계분석을 통하여 N-D/B의 유효성과 연구대상 해역의 사고특징을 검토하였다. 또한, 올바른 N-D/B 분석과 정확한 해양사고 건수 예측을 위한 최적 적용기간 선정 방법을 제안하였다.

Steel-UHPC composite dowels' pull-out performance studies using machine learning algorithms

  • Zhihua Xiong;Zhuoxi Liang;Xuyao Liu;Markus Feldmann;Jiawen Li
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.531-545
    • /
    • 2023
  • Composite dowels are implemented as a powerful alternative to headed studs for the efficient combination of Ultra High-Performance Concrete (UHPC) with high-strength steel in novel composite structures. They are required to provide sufficient shear resistance and ensure the transmission of tensile forces in the composite connection in order to prevent lifting of the concrete slab. In this paper, the load bearing capacity of puzzle-shaped and clothoidal-shaped dowels encased in UHPC specimen were investigated based on validated experimental test data. Considering the influence of the embedment depth and the spacing width of shear dowels, the characteristics of UHPC square plate on the load bearing capacity of composite structure, 240 numeric models have been constructed and analyzed. Three artificial intelligence approaches have been implemented to learn the discipline from collected experimental data and then make prediction, which includes Artificial Neural Network-Particle Swarm Optimization (ANN-PSO), Adaptive Neuro-Fuzzy Inference System (ANFIS) and an Extreme Learning Machine (ELM). Among the factors, the embedment depth of composite dowel is proved to be the most influential parameter on the load bearing capacity. Furthermore, the results of the prediction models reveal that ELM is capable to achieve more accurate prediction.

기상위험 조기경보를 위한 웹기반 표출시스템 구현 (Implementation of a Web-Based Early Warning System for Meteorological Hazards)

  • 공인학;김홍중;오재호;이양원
    • 대한공간정보학회지
    • /
    • 제24권4호
    • /
    • pp.21-28
    • /
    • 2016
  • 호우, 폭염, 한파와 같은 기상재해를 미연에 방지하기 위해서는 기상예측이 매우 중요하다. 우리나라 기상청에서는 현재시점의 기상특보를 제공하고 있고, 농촌진흥청에서는 농장재해에 대한 2일 예보를 일부 지역에 대해 시범서비스 하고 있다. 이러한 기상위험 조기경보 시스템의 발전을 위해서는 전국적인 고해상도 예측자료와 Web GIS가 통합될 필요가 있다. 본 연구는 1시간 간격, 1km 해상도의 수치예보 자료와 Web GIS가 통합된 형태의 기상위험 조기경보 서비스의 프로토타입 개발을 목적으로 한다. 이를 위하여 전지구모델 GME의 다운스케일링을 통해 시공간분해능이 향상된 기상위험 예측자료가 Web GIS를 통해 표출되도록 하였으며, 오픈소스 기반의 지도 API와 JavaScript 라이브러리의 시각화기법을 결합하여 동적 인터액션이 가능한 사용자 인터페이스를 구성하였다. 711,504개 격자점에 대하여 1시간 간격의 위도, 경도, 기온, 강수량 등 9개 항목으로 이루어진 대량의 데이터를 관리하기 위하여 오픈소스 기반의 DBMS인 PostgreSQL을 사용하였으며, Spring과 myBatis를 연동하여 전자정부 프레임웍기반의 웹서비스를 구성하였다. 이 시스템은 현재의 기상위험 상황에 대한 정보뿐만 아니라, 향후 7일간의 호우, 폭염, 한파 등 기상위험 예측정보가 1시간 간격 및 읍면동 단위로 제공된다. 이 시스템이 현업운용 되기 위해서는 수치예보의 정확도 향상과 함께 래스터 및 벡터 자료의 전처리시간 단축이 향후과제로서 해결되어야 할 것이다.

기계학습 기법을 이용한 CNC 공구 마모도 예측에 관한 연구 (A Study on the Prediction of CNC Tool Wear Using Machine Learning Technique)

  • 이강배;박성호;성상하;박도명
    • 한국융합학회논문지
    • /
    • 제10권11호
    • /
    • pp.15-21
    • /
    • 2019
  • 4차 산업혁명이 주목받고 있다. 특히 스마트 팩토리는 제조 분야에서 그 필요성이 강조되고 있다. 현재 제조 분야에서 CNC(Computerized Numeric Controller: 컴퓨터 수치 제어)에 관한 연구가 활발히 진행 중이다. 국내에서는 CNC 설비에 음향 센서, 진동 센서 등 여러 가지 센서를 부착하여 소음, 진동 등 설비 관련 데이터를 수집하는 방안에 관한 연구가 존재한다. 본 연구는 CNC 머신에서 발생하는 데이터를 중심으로 머신러닝 기법을 활용하여 설비 가동 조건이 공구 마모도에 미치는 영향을 분석한다. CNC 설비에서 발생하는 X축, Y축, Z축의 힘, 이동 속도 등 다양한 데이터를 수집한다. 데이터 탐색 기법을 통해 데이터의 특성 및 분포를 분석하였다. 데이터를 RF(Random Forest), XGB(Extreme Gradient Boost), SVM(Support Vector Machine)을 이용하여 CNC 설비 가동 조건이 공구 마모도에 미치는 영향을 분석하였다. 본 연구의 결과는 CNC 설비 가동에서 최적의 조건을 찾고, 이를 바탕으로 품질 향상 및 기계 손상을 예방하는데 활용될 수 있을 것으로 기대된다.

밀링에서 기하학적 표면조도와 측정조도의 선형보정 방법에 관한 연구 (A Study on the Linear Compensation Method of Ideal Surface Roughness to Actual Roughness in Milling)

  • 서상원;김동현;김수진
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.15-20
    • /
    • 2016
  • In this study, a numeric model for the prediction of ideal surface roughness in the rounded end mill was derived from the shape of the tool and feed per tooth. The model is compared with the well-known model of a ball and flat end mill. The ideal surface roughness was matched to the actual surface roughness by the linear equation, from which the empirical constant should be gathered from the test machining systems in the industry.