• Title/Summary/Keyword: number plate recognition

Search Result 89, Processing Time 0.022 seconds

Recognition of Car License Plate using Kohonen Algorithm

  • Lim, Eun-Kyoung;Yang, Hwang-Kyu;Kwang Baek kim
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.785-788
    • /
    • 2000
  • The recognition system of a car plate is largely classified as the extraction and recognition of number plate. In this paper, we extract the number plate domain by using a thresholding method as a preprocess step. The computation of the density in a given mask provides a clue of a candidate domain whose density ratio corresponds to the properties of the number plate obtained in the best condition. The contour of the number plate for the recognition of the texts of number plate is extracted by operating Kohonen Algorithm in a localized region. The algorithm reduces noises around the contour. The recognition system with the density computation and Kohonen Algorithm shows a high performance in the real system in connection with a car number plate.

  • PDF

Automatic Recognition System for Number Plate of Car using Multi Neural Network (다중 신경망을 이용한 차량 번호판의 자동인식 시스템)

  • Park, S.H.;Choi, G.J.;Ahn, D.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • This paper presents the automatic recognition system for car number plate. In our country, two types of number plate pattern is used. The one is old type of number plate, the other is new type of number plate. To recognize both new and old type number plates, the system must have flexibility. Therefore, in this paper, automatic recognition system is developed by use of the neural network for good adaptation, good generalization, and modulation. And because the number plate is made of three codes, the multi neural network consists of three networks. Neural network is teamed by GDR(Generalized Delta learning Rule) and it is verified the effectiveness of the method through experimental results.

  • PDF

Development of an image processing algorithm for the recognition of car types and number plates (차종, 번호판 위치 및 자동차 번호판 인식을 위한 영상처리 알고리즘개발)

  • 김희식;이평원;김영재
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1718-1721
    • /
    • 1997
  • An image processing algorithm is developed in order to recognize the type of cars, the position of a number plate and the characters on the plate. to recognize the type of cars, comparison of two images is used. One has a car image, the other is just a background image without car. After that recognition, a vertical line filter is used to find the location of the plate. Finally the simularity mehod is used to recognize the numbers on plates.

  • PDF

MATHEMATICAL IMAGE PROCESSING FOR AUTOMATIC NUMBER PLATE RECOGNITION SYSTEM

  • Kim, Sun-Hee;Oh, Seung-Mi;Kang, Myung-Joo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.57-66
    • /
    • 2010
  • In this paper, we develop the Automatic Number Plate Recognition (ANPR) System. ANPR is generally composed of the following four steps: i) The acquisition of the image; ii) The extraction of the region of the number plate; iii) The partition of the number and iv) The recognition. The second and third steps incorporate image processing technique. We propose to resolve this by using Partial Differential Equation(PDE) based segmentation method. This method is computationally efficient and robust. Results indicate that our methods are capable to recognize the plate number on difficult situations.

A Licence Plate Recognition System using Hadoop (하둡을 이용한 번호판 인식 시스템)

  • Park, Jin-Woo;Park, Ho-Hyun
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.142-145
    • /
    • 2017
  • Currently, a trend in image processing is high-quality and high-resolution. The size and amount of image data are increasing exponentially because of the development of information and communication technology. Thus, license plate recognition with a single processor cannot handle the increasing data. This paper proposes a number plate recognition system using a distributed processing framework, Hadoop. Using SequenceFile format in Hadoop, each mapper performs a license plate recognition with a number of image data in a data block Experimental results show that license plate recognition performance with 16 data nodes accomplishes speedup of maximum 14.7 times comparing with one data node. In large dataset, the recognition performance is robust even if the number of data nodes increases gradually.

A Study on improving the performance of License Plate Recognition (자동차 번호판 인식 성능 향상에 관한 연구)

  • Eom, Gi-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.203-207
    • /
    • 2006
  • Nowadays, Cars are continuing to grow at an alarming rate but they also cause many problems such as traffic accident, pollutions and so on. One of the most effective methods that prevent traffic accidents is the use of traffic monitoring systems, which are already widely used in many countries. The monitoring system is beginning to be used in domestic recently. An intelligent monitoring system generates photo images of cars as well as identifies cars by recognizing their plates. That is, the system automatically recognizes characters of vehicle plates. An automatic vehicle plate recognition consists of two main module: a vehicle plate locating module and a vehicle plate number identification module. We study for a vehicle plate number identification module in this paper. We use image preprocessing, feature extraction, multi-layer neural networks for recognizing characters of vehicle plates and we present a feature-comparison method for improving the performance of vehicle plate number identification module. In the experiment on identifying vehicle plate number, 300 images taken from various scenes were used. Of which, 8 images have been failed to identify vehicle plate number and the overall rate of success for our vehicle plate recognition algorithm is 98%.

  • PDF

도로영상에서 차량 특성 곡선을 이용한 차종 구분 알고리즘 개발

  • 김희식;이호재;이평원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.423-426
    • /
    • 1995
  • An image processing algorithm is developed in order to recognize the type of cars, the position of a number plate and the characters on the plate. To recognize the type af cars, comparison of two images is used. One has a car image, the other is just a background image without car. After that recognition, a vertical line filter is used to find the location of the plate. Finally the similarity method is used to recognize the numbers on the plates.

  • PDF

A Study on the Vehicle License Plate Recognition Using Convolutional Neural Networks(CNNs) (CNN 기법을 이용한 자동차 번호판 인식법 연구)

  • Nkundwanayo Seth;Gyoo-Soo Chae
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.7-11
    • /
    • 2023
  • In this study, we presented a method to recognize vehicle license plates using CNN techniques. A vehicle plate is normally used for the official identification purposes by the authorities. Most regular Optical Character Recognition (OCR) techniques perform well in recognizing printed characters on documents but cannot make out the registration number on the number plates. Besides, the existing approaches to plate number detection require that the vehicle is stationary and not in motion. To address these challenges to number plate detection we make the following contributions. We create a database of captured vehicle number plate's images and recognize the number plate character using Convolutional Neural Networks. The results of this study can be usefully used in parking management systems and enforcement cameras.

Number Plate Detection with a Multi-Convolutional Neural Network Approach with Optical Character Recognition for Mobile Devices

  • Gerber, Christian;Chung, Mokdong
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.100-108
    • /
    • 2016
  • In this paper, we propose a method to achieve improved number plate detection for mobile devices by applying a multiple convolutional neural network (CNN) approach. First, we processed supervised CNN-verified car detection and then we applied the detected car regions to the next supervised CNN-verifier for number plate detection. In the final step, the detected number plate regions were verified through optical character recognition by another CNN-verifier. Since mobile devices are limited in computation power, we are proposing a fast method to recognize number plates. We expect for it to be used in the field of intelligent transportation systems.

Recognition of Vehicle Number Plate Using Color Decomposition Method and Back Propagation Neural Network (색 분해법과 역전파 신경 회로망을 이용한 차량 번호판 인식)

  • 이재수;김수인;서춘원
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.46-52
    • /
    • 1998
  • In this paper, after inputting the computer with the attached number plate on the vehicle, using it, the color decomposition method and back propagation neural network proposed the extractable method of the vehicle number plate at high speed. This method separated R, G, B signal form input moving vehicle image to computer through video camera, then after transform this R, G, B signal into input image data of the computer by using color depth of vehicle number plate and store up binary value in the memory frame buffer. After adapting character's recognition algorithm, also improving this, by adapting back propagation neural network makes the vehicle number plate recognition system. Also minimalizing the similar color's confusion, adapting horizontal and vertical extracting algorithm by using the vehicle's rectangular architecture shows the extract and character's recognition of the vehicle number plate at high speed.

  • PDF