• Title/Summary/Keyword: number of fixture

Search Result 71, Processing Time 0.021 seconds

Finite Element Analysis of a Newly Designed Screw Type Fixture for an Artificial Intervertebral Disc (새로운 방식의 나사형 인공디스크 고정체 해석)

  • Lim, Jong-Wan;Yang, Hyun-Ik
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.56-66
    • /
    • 2010
  • The various total replacement artificial discs have developed because spinal fusion has shown a lesser mobility of an operated segment and an accelerated degeneration at adjacent discs. But almost artificial discs have not yet been reached on the substitute surgery of fusion because many problems such as those clinical success rates were not more than them of fusion have not solved. In this paper, vertically inserted assemble-screw fixture in vertebrae was proposed to improve the fixed capability of artificial disc. And also, to evaluate the design suitability of newly designed screw-type, including fixtures of commercial discs such as wedge and plate type, the 1/4 finite element model with a vertebra and various implanted fixtures were generated, and next, 3 bending motions such as flexion, bending and twisting under the moment of 10Nm and compression under the force of 1000N were considered, respectively and finally, FE analyses were performed. Results of three fixture types were compared, such as Range of Motion and maximal stress, and so on. For ROM, the screw type was average 58% less than the wedge type and was average 42% less than the plate type under all loading conditions. For average stress ratio at closer nodes between vertebra and each fixture, the wedge type was the lowest as minimum 0.02 in twisting, screw types were the highest as maximum 0.28 in compression. As the results of using cement material, it was predicted that the instability problem of the wedge type was better solved. The screw type which could be increased by implanting depth according to the number of assembling mid screws, showed that the decreased tendency of ROMs and maximal cancellous bone stresses. In further study, controlling the number of assembling screws that was suitable for a patient's bone quality, development of surgical tools and keeping on design supplementations, which will be able to develop the competitive artificial disc.

Study in Post-Assembly Magnetization of Line Start Permanent Magnet Motor (영구자석 매입형 유도동기전동기의 조립 후 착자에 대한 연rn)

  • 이철규;권병일
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.373-380
    • /
    • 2003
  • This paper consists of a study in post-assembly magnetization of LSPM (Line Start Permanent Magnet Motor). Recently, LSPM is noted as an alternative to the induction motor because it offers a very high efficiency and unity power factor, And it is necessary for permanent magnets to be magnetized by means of post-assembly magnetization in LSPMS because of the manufacturing cost involved. The manufacturing process is also simpler in post-assembly magnetization than in pre-assembly magnetization. Generally, permanent magnet motors are magnetized by their own stator coil or by magnetizing fixtures. However, the permanent magnet in a LSPM is scarcely magnetized by using them because of the eddy current of the rotor bar. Hence, it is necessary to design a magnetizing fixture that overcomes this problem. In this paper, the author analyses the post-assembly magnetization of a LSPM and proposes a method for designing the magnetizing fixture. The method that the author proposes is to make the number of coil turns greater in order to reduce the effect of the eddy current of the rotor bars.

Pallet-fixture Allocation in Reconfigurable Manufacturing Cells: An Integrative Approach (재구성형 모듈러셀의 팔레트-치구 할당: 통합적 접근)

  • Han, Su-Min;Seo, Jin-Wu;Park, Jin-Woo;Lee, Jong-Kuk;Kang, Kyung-Chul;Lee, Sang-Ho;Moon, Jum-Seang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.357-366
    • /
    • 2012
  • To schedule a Reconfigurable Manufacturing Cell (RMC), reconfiguration and setting decisions should be made first. Those decisions, together with characteristics of production orders, affect attainable performance of a system. So an integrative approach is required considering all decisions and characteristics rather than dealing with each of them separately. Pallet-fixture allocation, as a decision problem in setting, which determines the number of pallets to be equipped with each fixture type to produce different types of products, has rarely been investigated. In this study, several pallet-fixture allocation rules are proposed including both simple and novel ones. Then system performance is investigated through various combinations of setting and scheduling decisions (rules) for given system configurations and production orders, via simulation. The result shows that one of proposed pallet-fixture allocation rules which considers both configuration and order characteristic outperforms the others, justifying the necessity of an integrative approach in the RMC operation.

A Study on the Convertible Emergency Lighting Fixture in Consideration of Dark Adaptation (암순응을 고려한 겸용형 비상조명등에 관한 연구)

  • Yum, Sung-Bae;Yoon, Cheol-Gu;Lee, Jung-Eun;Shin, Hye-Young;Song, Young-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.24-29
    • /
    • 2011
  • When an emergency light turns on due to a blackout, the intensity of illumination is drastically changed from hundreds [1x] to 1.0[1x]. This sharp change of illumination intensity not only lowers the darkness adaptation of the eye, it also degrades the obstacle cognitive ability of the evacuees, resulting in secondary critical accidents due to anxiety, and fear. Thus, this study proposed a convertible emergency lighting fixture that controls the rate of speed of light in two stages by time with darkness adaptation of the eye in consideration. In addition, the effect of such emergency light is verified by suggesting an illumination simulation without increasing the number of light or capacity of battery to make it economically feasible.

Development of the optimal Jig & fixture applied to ultra-precision saddle machining (복합가공기용 초정밀급 새들 가공을 위한 최적의 고정구 개발)

  • Kim, Byoung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.89-95
    • /
    • 2014
  • The increasing level of demand for multi-tasking machines requires a saddle with an ultra-precise machining accuracy level of $15{\mu}m$, as such a saddle is one of the main components of these machines. The manner of achieving ultra-precise machining accuracy mainly depends on the fixed forces. In this paper, we optimized the number of contact points and the contact positions to reduce the deformation of the saddle while it is machined. The performance levels of the proposed optimal jig and fixture are determined by measuring the flatness, parallelism and perpendicularity of a machined saddle. The machining accuracy is found to be lower than $15{\mu}m$ at all measured points.

Immediate implant placement in fresh extraction sockets

  • Lee, Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.47 no.1
    • /
    • pp.57-61
    • /
    • 2021
  • Immediate implant placement (IIP) in fresh extraction sockets exhibits similar survival and success rates to delayed implant placement in healed sockets. Several advantages of IIP involve shortened total treatment time, reduction of the number of invasive surgeries, and subsequent reduction of patient discomfort due to lack of additional surgeries. The major shortcomings in IIP, however, include the inability to obtain early bony support, presence of a gap between the extraction socket and fixture, and the inability to cover the fixture with soft tissue, leading to increased risk of infection and implant loss. When IIP is performed, atraumatic or minimally traumatic extractions, conservation of the septal bone in molars, minimal flap elevation or flapless surgery, bone grafting the gap between the fixture and the extraction socket, and coverage with soft tissue or a membrane must be considered.

Energy-dispersive X-ray spectroscopic investigation of a fractured non-submerged dental implant associated with abutment fracture

  • Truc Thi Hoang Nguyen;Mi Young Eo;Kezia Rachellea Mustakim;Mi Hyun Seo;Hoon Myoung;Soung Min Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • The biocompatibility and durability of implant fixtures are major concerns for dentists and patients. Mechanical complications of the implant include abutment screw loosening, screw fracture, loss of implant prostheses, and implant fracture. This case report aims to describe management of a case of fixture damage that occurred after screw fracture in a tissue level, internal connection implant and microscopic evaluation of the fractured fixture. A trephine bur was used to remove the fixture, and the socket was grafted using allogeneic bone material. The failed implant was examined by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), which revealed a fractured fixture with both normal and irregular bone patterns. The SEM and EDS results give an enlightenment of the failed fixture surface micromorphology with microfracture and contaminated chemical compositions. Noticeably, the significantly high level of gold (Au) on the implant surface and the trace amounts of Au and titanium (Ti) in the bone tissue were recorded, which might have resulted from instability and micro-movement of the implant-abutment connection over an extended period of time. Further study with larger number of patient and different types of implants is needed for further conclusion.

A FINITE ELEMENT STRESS ANALYSIS OF FIXED PARTIAL DENTURE SUPPORTED BY OSSEOINTEGRATED IMPLANT AND THE NATURAL TEETH WITH REDUCED ALVEOLAR BONE HEIGHT (감소된 치조골 고경을 갖는 치아와 골유착성 임프랜트에 의해 지지되는 고정성 국소의치의 유한요소법적 응력분석)

  • Choi Choong-Kug;Kay Kee-Sung;Cho Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.2
    • /
    • pp.296-326
    • /
    • 1994
  • The purpose of this study was to evaluate the mechanical effects when one implant fixture was connected to the natural teeth with reduced alveolar bone height. This study also examined the effects of increasing the number of abutment teeth and the effects of the intramobile connector and the titanium connector as they were inserted between the implant superstructure and the fixture. The distribution and concentration load was applied to the fixed partial denture(FPD) supported by implant and the natural teeth with reduced alveolar bone height. The stress and displacement of each element was observed and compared by the two-dimensional finite element method. The following results were obtained : 1. The greater the loss of alveolar bone in natural teeth area, the greater the displacement of FPD and the stress concentration in alveolar bone around implant, especially at the stress concentration in the mesial alveolar bone crest around implant fixture. 2. The displacement of FPD was increased more and that of implants fixture was decreased more when intramobile connector was used than titanium connector was used. Also the stress concentration in alveolar bone around implant fixture was greater when intramobile connector than titanium connector. One implication of this finding was that the difference in stiffness of implant and the natural teeth with reduced alveolar bone height could be partially compensated in case of the POM intramobile connector. 3. The amount and direction of displacement and the stress distribution of the 4-unit FPD was better than those of the 3-unit FPD. It implied that the difference of stiffness of implant and natural teeth with reduced alveolar bone height could be partially compensated in case of the 4 unit FPD.

  • PDF

The 3-Dimensional Finite Element Analysis of Minimum Implant Structure for Edentulous Jaw (무치악에 대한 최소 임플란트의 구조물의 3차원 유한요소 해석)

  • Jang, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • The aim of the study is to interpret the distribution of occlusal force by 3-dimensional finite element analysis of ISP(Implant Supported Prosthesis) supported by minimum number of implant to restore the edentulous patients. For this study, the Astra Tech implant system is used. Geometric modeling for 6 and 4 fixture ISP group is performed with respect to the bone, implant and one piece superstructure, respectively. Implants are arbitrarily placed according to the anatomical limit of lower jaw and for the favorable distribution of occlusal force, which is applied at the end of cantilever extension of ISP with 30mm. Element type is tetrahedral for finite element model and the typical mechanical properties, Young's modulus and Poisson's ratio of each material, cortical, cancellous bone and implant material are utilized for the finite element analysis. From this study, we can see the distribution of equivalent stress equal to real situation and speculate the difference in the stress distribution in the whole model and at each implant fixture, From the analysis, the area of maximum stress is distributed on distal contact area between bone and fixture in the crestal bone. The maximum stress is 53MPa at the 0.2mm area from the bone-implant interface in the maximum side for 300N load condition for 4 fixture case, which is slightly less than the stress calculated from allowable strain. This stress has not been deduced to directly cause the loss of crestal bone around implant fixture, but the stress can be much reduced as the old peoples may have lower chewing force. Thus, clinical trial may be performed with this treatment protocol to use 4 fixtured ISP for old patients.

Setup Planning for Machining processes Using Expert System Approach (전문가 시스템 접근법을 이용한 기계가공용 셋업계획)

  • Jeong, Yeong-Deug
    • IE interfaces
    • /
    • v.6 no.1
    • /
    • pp.31-45
    • /
    • 1993
  • Setup planning for machining processes is a part of fixture planning which is also a part of process planning. A setup of a part is defined as a group of features which are machined while the part is fixtured in one single fixture. Setup planning includes a number of tasks such as the selection of setup, sequence of setups and datum frame for each setup. Setup planning is an important function in fixture planning which must be able to support and to clamp a workpiece to prevent deflections caused by machining and clamping loads. This paper presents setup planning system using expert system approach(SPES) for prismatic parts which can be machined on vertical milling machine. SPES consists of preprocessing module and main processing module. Preprocessing module executes the conversion of feature data to frame type data and the determination of setups, and main processing module executes the determination of datum frame of each setup and sequance of setups. Preprocessing module is coded by C language and main processing module is a rule-based expert system using EXSYS pro. The performance of SPES is evaluated through case studies and the results show successful work except for operation sequence of machining holes. This is due to the limited rules for machining holes.

  • PDF